

JAND series AC servo driver

User manual

JAND-1002 JAND-2002 JAND-4002 JAND-7502 JAND-15002

Address: Building B, Jiayu Science and Technology Innovation Industrial Park, Jin'an Road, Matian Street, Guangming District, Shenzhen Tel: 0755-26509689 400 189 0098 Fax: 0755-26509289 Email: info@jmc-motion.com Http: ://www.szjmc.com

Preface

All the contents of this manual, the copyright property of which belongs to Shenzhen JMC Electronics Co., Ltd., without the permission of Shenzhen JMC Electromechanics Co., Ltd., any unit or individual shall not copy, copy or copy at will. There is no guarantee, position expression or other implication of any kind in this manual. If there is any information about the products mentioned in this manual. Shenzhen JMC Electromechanics Co., Ltd. and its employees will not bear any responsibility for the direct or indirect data outflow, resulting in the loss of profits. In addition, the products and materials mentioned in this manual are for reference only, and the content is subject to update without prior notice.

All rights reserved and may not be reproduced

Shenzhen Jiemeikang Electromechanical Co., Ltd

Version	Writer	Approved
V1.2	R&D	R&D

Contents

reface	1
ontents	2
hapter 1 Safety Precautions	6
1.1 Precautions for receiving and installing	6
1.2 Wiring Precautions	6
1.3 Precautions for operation and operation	7
1.4 Precautions for maintenance and inspection	7
hapter 2 Product Introduction	9
2.1 Servo driver	9
2.1.1 Overview	9
2.1.2 Main Features	9
2.1.3 Driver specifications	10
2.1.4 Servo drive nameplate and model description	13
2.2 Servo motor	14
2.2.1 Overview	14
2.2.2 Main Features	15
2.2.3 Servo motor nameplate and model description	15
2.3 Main circuit wiring of the servo control system	18
2.3.1 Servo Control System Wiring Diagram	
2.3.2 Main power circuit connection	19
3.1 Distribution of servo driver ports	
3.2 Description of servo driver CN1 control port	
3.2.1 CN1 Control Port Definition	21
3.2.2 CN1 control port connection instructions	
3.2.3 Brake Control Connection Diagram	25
3.3 Driver CN2 encoder port description	
3.3.1 1394-6P Encoder Connector Description	

3.4 Driver CN3/CN4 Port Description	27
3.5 Drive CN5 Port Description	27
3.6 Instructions for 200W/400W power supply and motor power line ports	28
3.7 Description of 750/1500W power supply and motor power line ports	29
Chapter 4 Installation Instructions	31
4.1 Installation dimensions	31
4.2 Installation and usage environment	33
Chapter 5 Panel Display Description and Settings	34
5.1 Introduction to the Functions of Each Part of the Panel	34
5.2 Switching process of operation mode	.35
5.3 Status display	36
5.4 Parameter Setting Writing and Saving Method	.37
Chapter 6 Control Methods and Settings	39
6.1 Position control	39
6.1.1 Position control wiring diagram	39
6.1.3 Description of Position Control Mode Parameters	41
6.1.4 Example of electronic gear ratio calculation	.42
6.2 Speed control	45
6.2.1 Speed Control Wiring Diagram	.45
6.2.2 Description of Speed Control Mode Parameters	.46
6.3 Torque Control	.47
6.3.1 Torque Control Wiring Diagram	.47
6.3.2 Parameter Description of Torque Control Mode	48
Chapter 7 Trial Operation and Parameter Adjustment	50
7.1 Running test	50
7.1.1 Pre-run testing	.50
7.1.2 No-load trial run test	.51
7.2 Parameter adjustment	.54
7.3 Manual Gain Adjustment	.56

7.3.1 Basic parameters56	5
7.3.2 Gain switching)
7.3.3 Feedforward function	1
7.3.4 Disturbance Observer	3
7.3.5 Suppression of Machine Resonance	4
Chapter 8 Parameters and Functions)
8.1 Parameter List)
8.2 Parameter Description	7
8.2.1 P00-xx motor and driver parameters	7
8.2.2 P01-xx main control parameters	1
8.2.3 P02-xx gain class parameters	4
8.2.4 P03-xx position parameters)
8.2.5 P04-xx speed parameters	3
8.2.6 P05-xx torque parameters106	5
8.2.7 P06-xx I/O parameters108	3
8.2.8 P08-xx Advanced Function Parameters	2
8.3 List of Monitoring Items115	5
8.4 Auxiliary functions	7
Chapter 9 Fault Analysis and Handling	1
9.1 Fault alarm information table121	1
9.2 Causes and Handling of Fault Alarm 122	2
Chapter 10 Communication	3
10.1 Modbus communication parameter settings	3
10.2 Modbus communication supports reading and writing parameter settings	s129
10.3 Overview of Modbus Communication Protocol	2
10.3.1 Introduction	2
10.3.2 Communication package	2
10.3.3 From Address and Send Request	3
10.4 Function number	3

10.4.1 Function number 03: Read hold register	133
10.4.2 Function number 06: Adjusting a single register	134
10.4.3 Function number 10: Adjustment register	135
10.4.4 Data Start Address	135
10.5 Dead time	136
10.6 Exception procedure response	136
Chapter11 Instructions for using special functions	138
11.1 Origin reset function	138
11.1.1 Function Description	138
11.1.2 Basic servo settings and instructions	138
11.1.3 Precautions for using origin reset	140
11.2 Use of absolute encoders	141
11.2.1 Function Description	141
11.2.2 Basic settings and instructions for MODBUS based	
communication servo	141
11.2.3 Absolute data address based on MODBUS communication.	142
11.2.4 Absolute encoder related alarm processing	142
11.2.5 Absolute encoder battery replacement	143
11.3 Multi turn absolute value origin regression function	143
11.3.1 Function Description	143
11.3.2 Basic servo settings and instructions	144
11.3.3 Origin setting	145

Chapter 1 Safety Precautions

In order to prevent harm to personal and property safety, please be sure to observe the following

precautions, and the following marks are specially marked for distinction:

Danger	Indicates a high risk of death or serious injury
Notice	Indicates that there is a high possibility of minor injury or property damage
\oslash	Indicates prohibited items

1.1 Precautions for receiving and installing

- Danger: 1、 Please use it with the driver and motor according to the specified method, otherwise it will cause equipment damage or fire.
 - 2 It is forbidden to use it in places with severe water vapor, flammable gas, corrosive gas, etc., otherwise it will cause electric shock, fire, equipment damage, etc.

1.2 Wiring Precautions

Danger: 1, Do not connect the driver power supply to the U, V, W motor output terminals, otherwise the driver will be damaged, which may cause personal injury or fire.

2. Please confirm that the connecting wires of the power supply and motor output terminals are locked tightly, otherwise sparks may be caused and fire may result.

3. Please choose the power cord and motor power extension cord correctly to avoid fire caused by insufficient current capacity of the wire.

4. Please confirm that the driver shell and the motor are grounded. Poor grounding may cause electric shock.

Notice : 1. Please do not bind the motor power line and signal line together or pass through the same pipeline to prevent interference to the signal.

2. Please use multi-strand twisted and shielded wires for signal wires and encoder feedback extension wires to enhance anti-interference ability.

- 3. After the driver is powered off, there is still high voltage inside, please do not touch the power terminal within 5 minutes, and confirm that the discharge indicator light is off before operating.
- 4. Before powering on, please confirm whether the wiring is connected correctly.

1.3 Precautions for operation and operation

Danger : 1. Before installing the equipment, please run it without load to avoid accidents.

2. Do not allow untrained personnel to operate to prevent equipment damage and personnel injury caused by misoperation.

 During normal operation, please do not touch the radiator and its interior of the driver with your hands to prevent high temperature burns or electric shock.

- Notice: 1. Please adjust the driver parameters first, and then test for a long time to prevent bad use of the driver and equipment.
 - 2. Please confirm that the switches such as equipment startup, emergency stop, and shutdown are valid before operating the equipment.
 - 3. Please do not switch the power on and off frequently.

1.4 Precautions for maintenance and inspection

1. During operation, it is forbidden to touch the inside of the driver and motor to prevent electric shock.

2. Within 5 minutes after the power is turned off, do not touch the power supply and power terminals to prevent electric shock.

3.Do not change the connecting wire while the power is on, in case of electric shock or personal injury

- 4. It must be operated and maintained by trained professionals.
- 5. Do not disassemble and repair except for our company personnel.

Chapter 2 Product Introduction

2.1 Servo driver

2.1.1 Overview

The JAND series universal servo driver is a high-performance AC servo unit developed by JMC. The servo driver in this series adopts advanced motor control dedicated DSP chips, large-scale programmable gate arrays (FPGAs), and IPM power modules, which have the characteristics of small size, high integration, stable performance, and reliable protection. With rich digital and analog I/O interfaces, it can be used in conjunction with various upper computer devices and supports MODBUS communication protocol for convenient networking. By optimizing the PID control algorithm, full digital control of position, speed, and torque accuracy is achieved, which has the advantages of high accuracy and fast response. Simultaneously supporting 17 bit and 20 bit high-precision absolute encoder motors to meet different performance requirements for customers. Widely used in automation fields such as CNC machine tools, printing and packaging machinery, textile machinery, robots, and automated production lines.

2.1.2 Main Features

- Using DSP+FPGA dual chip platform and optimized Current loop design, the driver has the characteristics of high dynamic response, extremely short setting time, stable operation and small vibration when stopping.
- 2. Equipped with an automatic gain adjustment module, users can choose the rigidity level according to their needs.
- 3. Built-in FIR filter and multiple sets of notch filters can automatically identify and suppress mechanical vibration.
- 4. The built-in disturbance torque observer provides the driver with strong resistance to external disturbances.

- 5. There are multiple control modes to choose from, including position control, speed control, and torque control, and various control modes can be switched.
- 6. The position pulse input frequency reaches 4MHz and supports multiple position command modes such as pulse+direction, orthogonal pulse, double pulse, etc.
- Equipped with RS485 interface, supporting MODBUS communication, and combined with a multi turn absolute value encoder with memory function, it can be flexibly applied to industries such as robotic arms.
- 8. There are programmable 8-way Input and 5-way OUTPUT ports, allowing users to customize input and output through parameter settings, making applications flexible.
- 9. Supports 17 bit and 23 bit high-precision absolute value encoders.
- It has complete protection functions such as overvoltage, undervoltage, overspeed, overload, large position deviation, encoder error, and can remember 8 sets of historical fault information.
- 11. With a rich range of monitoring projects, users can choose the desired monitoring project to monitor the operation status during use.
- 12. The driver can communicate with a PC through the RS232 interface, achieving simple and fast debugging of the servo drive system.

2.1.3 Driver specifications

- 1. Electrical specifications
- a) Single phase 220V level servo driver

Model JAND * * 2-20B	200	400	750	1500
Single phase continuous	2.3	4.6	8.7	11.6
input current Arms				
Continuous output current	2.1	2.8	5.5	10
Arms				
Maximum output current	5.8	9.6	16.9	20
Arms				
Power specifications	Single phase AC180-240V, 50/60Hz			

Brake processing function External braking resistor

Brake resistor built-in

2. Basic specifications

Project		Describe	
Control method		Single phase full wave rectification	
		IGBT PWM Control Sine Wave Current Drive Method	
Feedback		Absolute value encoder (17B/M23B)	
	Temperature	Working temperature: 0-55 °C Storage temperature:	
		-25-85 °C	
	humidity Temperature	Work: 10%~90%	
	Altitude	When<1000m or above 1000m, it should be derated	
Conditions of use		according to GB/T 3859.2-93	
		Protection level: IP10, cleanliness: 2	
		No corrosive or flammable gases	
	Protection level	No oil or water splashing	
		Environments with less dust, salt, and metal powder	
	Speed adjustment	1: 5000	
	range		
		\pm 0.01%: external load variation 0-100%	
	Steady speed accuracy	\pm 0.01%: Power input variation \pm 10% (220V)	
performance		\pm 0.1%: ambient temperature \pm 25 °C (25 °C)	
	Speed response	1200Hz	
	frequency		
	Torque control	± 2%	
	accuracy		
	Encoder frequency	A-phase, B-phase, C-phase: linear drive output	
	division pulse output	Frequency division pulse number: can be set arbitrarily	
· · · · ·		Points: 8	
Input and output		Functions: servo ON, alarm clearing, forward overtravel	
signals	Input signal	signal input, reverse overtravel signal input, control	
		mode switching, P action command input, external	
		torque limit on forward rotation side, external torque	

		limit on reverse side, gain switching input, zero fixed
		input, command pulse prohibition input, encoder
		absolute value data requirement input, internal set speed
		switching input 1, internal set speed switching input 2,
		internal set speed switching input 3 Position command
		reset input, magnetic pole detection input, command
		pulse input rate switching input
		Points: 5
		Function: alarm output, bandbrake open output, servo
	output signal	ready output, positioning complete output, positioning
		close output, speed consistent output, motor zero speed
		output, torque limit detection output, speed limit
		detection output, warning output, command pulse input
		rate switching output
Display function		High voltage power indicator light, 6-position
		8-segment LED
	RS485	Support MODBUS protocol. Axis address: set through
Communication function		parameters
	RS232	Connect to PC for debugging and trial use
Regeneration treatment		Built in regenerative resistor or external regenerative
		resistor
Protection function		Overvoltage, undervoltage, overcurrent, overload, etc

2.1.4 Servo drive nameplate and model description

1. Model Description:

2. Nameplate content description

2.2 Servo motor

2.2.1 Overview

JASM series servo motors are high speed and high-precision servo motors developed by JMC to meet the requirements of modern automatic control; The servo motor of this series can control the speed and position accuracy very accurately, and can convert the voltage signal into torque and speed to drive the control object. The rotor speed of this series of servo motors is controlled by input signals and can react quickly. In automatic control systems, it is used as an executing element and has characteristics such as small electrical and mechanical time constants, high linearity, and starting voltage. It can convert the received electrical signals into angular displacement or angular velocity output on the motor shaft, and can provide real-time feedback signals to the servo driver for adjustment, achieving high-precision control.

2.2.2 Main Features

1. Model Description

1500W

15

- 1. High-energy magnetic force
- 2. Short term 300% overload capacity
- 3. Flange size (mm): 40, 60, 80, 110, 130
- 4. Power: 0.1-3KW optional
- 5. Low noise, low heat generation, high precision, high speed, etc

2.2.3 Servo motor nameplate and model description

80 JASM 5 07 2 30 K - 17B - XX Flange size (mm) 60、80、110、130 Power supply Encoder lines JASM AC series servo 110V 1 17BC/M17BC motor 2 220V M23B pole pairs Motor rated speed Four (default) 4 15 1500 RPM 5 Five pairs 20 2000 RPM 30 3000 RPM Special function Rated output power module, the Rated power default is the symbol Motor shaft type standard type 02 200W K keyway 400W 04 F flat shaft 07 750W S shaft 850W 08 G Gearbox 10 1000W Р special

16

2. Nameplate content description

2.3 Main circuit wiring of the servo control system

2.3.1 Servo Control System Wiring Diagram

The servo driver is directly connected to the industrial power supply and does not use power isolation such as transformers. To prevent cross electric shock accidents in the servo system, please use fuses or wiring circuit breakers on the input power supply. Due to the lack of a built-in grounding protection circuit in the servo drive, in order to form a safer system, please use a leakage circuit breaker that combines overload and short circuit protection or a dedicated leakage circuit breaker for supporting ground wire protection.

2.3.2 Main power circuit connection

Chapter 3 Port Description and Wiring

3.1 Distribution of servo driver ports

3.2 Description of servo driver CN1 control port

3.2.1 CN1 Control Port Definition

Interface between upper control and driver, used for upper computer control of driver and driver feedback output

26 DO4- D05+ D18- D16- D13- SIGN HPulse [HSIGN V_REF GND HSIGN OCZ OZ 50
27 DO5- /HPulse DI7- DI5- 24V STON /SIGN 24V PULSE (PULSE COM COM COM 49
1 DO4+ DO3+ DO2+ DO1+ DI1- COM+ GNDA MON2 +24V GNDA OA /OB OB 25
2 D03- D02- D01- D14- D12- GNDA NC MON1 T_REF +12V /OA /OZ 24

CN1Definition of each pin of the terminal:

Pin number	标号	Definition	Explanation
1	DO4+	Digital output positive	Custom output port
2	DO3-	Digital output negative	Custom output port
3	DO3+	Digital output positive	Custom output port
4	DO2-	Digital output negative	Custom output port
5	DO2+	Digital output positive	Custom output port
6	DO1-	Digital output negative	Custom output port
7	DO1+	Digital output positive	Custom output port
8	DI4-	Digital input negative	Custom input port
9	DI1-	Digital input negative	Custom input port
10	DI2-	Digital input negative	Custom input port
11	COM+	Common Input	High level 24V active
12	GNDA	Simulated ground	
13	GNDA	Simulated ground	
14	NC	No effect	

15	MON2	Analog data monitoring output 2	This feature is not currently supported
16	MON1	Analog data monitoring output 1	This feature is not currently supported
17	+24V	+24V output (for external I/O)	Maximum allowable output current:
			150mA
18	T_REF	Torque analog control positive	
19	GNDA	Simulated ground	
20	+12V	+12V output (for analog	Maximum allowable output current: 50
		commands)	mA
21	OA+	Encoder A-phase positive output	
22	OA-	Encoder A-phase negative output	
23	OB-	Encoder B phase negative output	
24	OZ-	Encoder Z-phase negative output	
25	OB+	Encoder B-phase positive output	
26	DO4-	Digital output negative	Custom output port
27	DO5-	Digital output negative	Custom output port
28	DO5+	Digital output positive	Custom output port
29	HPUL-	High speed pulse negative	
30	DI8-	Digital input negative	Custom input port
31	DI7-	Digital input negative	Custom input port
32	DI6-	Digital input negative	Custom input port
33	DI5-	Digital input negative	Custom input port
34	DI3-	Digital input negative	Custom input port
35	24V SIGN+	24V direction positive	High level 24V active
36	SIGN+	Direction positive	High level 5V effective
37	SIGN-	Direction negative	Low level 0V effective
38	HPUL+	High speed pulse correction	
39	24V PULS+	24V pulse correction	High level 24V active
40	HSIGN-	Negative in high-speed direction	
41	PULS-	Pulse negative	Low level 0V effective
42	V_REF	Speed analog control positive	
43	PULS+	Pulse Chongzheng	High level 5V effective
44	GND	Digitally	
45	СОМ	+24V output ground	
46	HSIGN+	High speed direction positive	
47	СОМ	+24V output ground	

48	EYES	Encoder Z-phase open collector	
		output	
49	COM	+24V output ground	
50	OZ+	Encoder Z-phase positive output	

Note:

1. When wiring the CN1 terminal, 24V PULS+shares PULS - with PULS+, and 24V SIGN+shares SIGN - with SIGN+. The difference is only one 24V high-level input and one 5V high-level input.

2. Please refer to the customized function settings for digital input (DI) and output (DO) ports Chapter 8

Parameter Description To set.

3.2.2 CN1 control port connection instructions

Digital input DI (DI1-DI8) can be connected with switches, relays and Open collector transistor circuits. You can use the power supply provided internally by the drive, or it can be powered by an external power supply. (Please refer to Chapter 8.2.7 P06-xx I/O Parameter Description for the function settings of the input I/O port.)

Using internal power input

Digital output The DO (DO1-DO5) output can be connected to relays, optocouplers, etc. You can use the power supply provided internally by the drive or an external power supply. When using an internal power supply, the internal 24V power supply of the drive can only provide 150mA current. When the load is greater than 150mA, please be sure to use an external power supply with a voltage range of **5-24V**. (Please refer to Chapter 8.2.7 P06-xx I/O Parameter Description for the function settings of the output I/O port.)

(Relay) Using external power supply

(Optocoupler) Using external power supply

Servo drives

(Relay) Using internal power supply

(Optocoupler) Using internal power supply

Speed and torque control analog quantity control input effective voltage range (-10V~10V) The command value corresponding to this voltage range can be set by the following parameters: P06-40 speed simulation command input gain, P06-43 torque simulation command input gain. Please refer to the detailed parameter description for specific setting methods.

The analog quantity signal of the external power supply

The internal 12V power supply, and the speed/torque is adjusted through the Potentiometer

3.2.3 Brake Control Connection Diagram

Note: 1. The factory brake function of the driver is controlled by DO2 (5, 4 pins) in CN1 to control the relay, and the relay switch controls the brake coil.

2. It is recommended to use a separate power supply for the brake coil

3.3 Driver CN2 encoder port description

3.3.1 1394-6P Encoder Connector Description

Pin	mark	definition	remark
number			
1	+5V	Output 5V power supply	
2	GND	Output power ground	
3	NC	No connect	
4	NC	No connect	
5	T+	Bus encoder T+	Bus driven dedicated
6	T-	Bus encoder T-	Bus driven dedicated

3.4 Driver CN3/CN4 Port Description

	PIN1 ->	PIN8
pin#	mark	Definition
PIN1	CANH	CNAH for bus servo only
PIN2	CANL	CNAL for bus servo only
PIN3	CGND	CGND for bus servo only
PIN4	reserve	reserve
PIN5	reserve	reserve
PIN6	GND	ground
PIN7	485-	485-
PIN8	485+	485+

3.5 Drive CN5 Port Description

Facing the CN5 port head-on

Foot position number	mark	Definition Description
1	3.3V	RS232 power supply 3.3V
2	TX232	RS232 reception
3	RX232	RS232 transmission
4	obligate	Prohibit connection
5	GND	RS232 ground

3.6 Instructions for 200W/400W power supply and motor power line ports

mark	mark	Description
L1、L2	Main circuit power supply and control circuit power	Connected to single-phase 220V AC power
	input terminal	
U、V、W	Motor power line	Connecting the motor power line
	connection end	
	Regenerative resistor	When using an external regenerative resistor, connect
P, C, N	connection terminal	the resistor to ports P and C
PE/grounding screw	Driver protective ground	Ground wire for power supply and motor
	screw	
Power indicator light	Driver power indication	Display whether there is high voltage inside the
		driver

Notice:

- Please make sure to connect an electromagnetic contactor between the power supply and the main circuit power supply of the servo drive, so that in the event of a servo drive failure, the power supply can be cut off to prevent excessive current from causing a fire.
- 2. 0.4kw and below drivers do not have built-in regenerative resistors, which will occur when the feedback energy exceeds the capacitor's absorption capacity AL.402Overvoltage alarm,

at this time, it is necessary to connect an external regenerative resistor and set P00-30, P00-31, and P00-32 to corresponding values. Please refer to the details for more information8.2 Parameter Analysis Description.

$3.\,7$ Description of 750/1500W power supply and motor power line ports

mark	Definition	Description
L1、L2、L3(750W)	Main circuit power supply and control circuit power	L1 and L2 ports are connected to single-phase 220V
	input terminal	AC power, and L3 is an empty leg
L1、L2、L3(1500W)		Choose single or three-phase 220V AC power according to the load situation
U、V、W	Motor power line connection end	Connecting the motor power line
P+、D、C、N-	Regenerative resistor connection terminal	Short circuit P+and D using a built-in regenerative resistor When using an external regenerative resistor, connect

		the resistor to ports P and C
PE/grounding screw	Driver protective ground screw	Ground wire for power supply and motor
Power indicator light	Driver power indication	Display whether there is high voltage inside the driver

Notice:

- 1. Please make sure to connect an electromagnetic contactor between the power supply and the main circuit power supply of the servo drive, so that in the event of a servo drive failure, the power supply can be cut off to prevent excessive current from causing a fire.
- 2. The 0.75kw driver has a built-in regenerative resistor. Please short circuit P+and D when using it. When the feedback energy exceeds the absorption capacity of the built-in regenerative resistor, it will occur AL.402Overvoltage alarm, in which case an external regenerative resistor needs to be connected. Before connecting the resistor, remove the P+and D short wires, and then connect both ends of the resistor to the P+and C terminals. Set the parameters P00-30, P00-31, and P00-32 to the corresponding values, as detailed in8.2 Parameter Analysis Description.

Chapter 4 Installation Instructions

4.1 Installation dimensions

400WAC servo driver with power up to and including (unit: mm)

750WAC servo driver (unit: mm)

1500WAC servo driver (unit: mm)

Attention:

1. The normal installation direction of the servo driver must be vertical and upright, with the top facing upwards to facilitate heat dissipation.

2. When installing the drive, ensure good ventilation of the equipment. When multiple drives are used in parallel within the cabinet, ensure that the distance between them is not less than 5CM.

3. To ensure safe use, please ensure that the grounding protection terminal of the driver is well connected to the equipment protection ground!

4.2 Installation and usage environment

The installation and use environment directly affects the normal operation and service life of the product, so the following conditions must be met:

- Working environment temperature: 0-55 °C; Working environment humidity: below 10% -90% (without condensation).
- 2. Storage environment: -20 °C~+85 °C; Storage environment humidity: below 90% (without condensation).
- 3. Vibration: below 0.5G.
- 4. Prevent rainwater dripping or damp environments.
- 5. Avoid exposure to sunlight.
- 6. Prevent oil mist and salt erosion.
- 7. Prevent corrosive liquids, gases, etc.
- 8. Prevent dust, cotton wool, and metal filings from invading.
- 9. Stay away from radioactive substances and combustibles.
- Space should be reserved around the placement of drives in the cabinet for easy loading, unloading, and maintenance.
- Pay attention to the air flow inside the cabinet, and if necessary, install an external fan to enhance the air flow and reduce the ambient temperature of the drive to facilitate heat dissipation; Long term working temperature below 55 °C.
- 12. Try to avoid vibration sources nearby and install shock absorbers such as vibration absorbers or anti vibration rubber gaskets.
- 13. If there is an electromagnetic interference source nearby and the power supply and control circuit of the driver are susceptible to interference, resulting in misoperation, a noise filter can be added or various effective anti-interference measures can be taken to ensure the normal operation of the driver (the noise filter will increase leakage current, and an isolation transformer needs to be installed at the input end of the driver power supply).

Chapter 5 Panel Display Description and Settings

5.1 Introduction to the Functions of Each Part of the Panel

JAND series AC servo panel adopts six digit LED tube to display status; 5-digit key input command, specific key functions are as follows:

Panel button label	Definition	Description
Μ	M button	Function switching and cancellation exit
	UP button	Display change and numerical increase function
▼	Down button	Display changes, numerical reduction function
	Left button	Shift function Used to switch high/low display in parameter mode
ENT	ENT button	Confirm or save functions

Remarks:

ENT button Long press and hold for 3 seconds to confirm or save the function.

In the monitoring and parameter interface, long press and hold UP/DOWN button Can be flipped quickly.

5.2 Switching process of operation mode

The JAND series AC servo has four functional modes, namely status display mode, monitoring mode, parameter setting mode, and auxiliary mode. The switching process between them is as follows:

Note: Press ENT button After entering the mode setting, you can press the M button Exit mode selection
5.3 Status display

The display discrimination is as follows:

Bit data

Abbreviation Symbol

Meaning of status display bit data:

Display	Meaning	Display	Meaning
AA	Control circuit power on display		Main circuit power supply ready
		[].] .	display
	When controlling speed and torque:	nn	Rotation detection display
	speed consistent display		
	When controlling the position:		
	positioning completion display		
	Base blocking display	(no	During speed and torque control: speed
	Servo OFF status lights up, ON status		command input
	turns off		During position control: displayed in
			command pulse input

Meaning of abbreviated symbols for status display:

Display	Meaning
8.8.8.9.	Servo not ready (power supply not powered on)
8.8.3.9.	Servo ready (servo motor not powered on)
8.8.8.4.	Servo enabled state (servo motor energized state)
B.8.8.E .	Forward overtravel signal input The port is in a valid state, and the
	motor forward rotation command is invalid
8. 8.8. 8.	Reverse overtravel signal input The port is in a valid state, and the
	motor reverse command is invalid
BELASE	Servo related operations completed correctly

	The servo is in an enabled state and cannot be operated. It must be	
	turned off before operation can proceed	
8.101.8	Invalid value entered, servo will not perform current operation	
88888	The relevant parameters of the servo are in a locked state and can only	
	be operated after unlocking	
86388 .	Servo fault display, fault definition, please refer to Chapter 9	

5.4 Parameter Setting Writing and Saving Method

Chapter 6 Control Methods and Settings

6.1 Position control

6.1.1 Position control wiring diagram

6.1.2 Position Control Wiring Diagram

Controller end direction+pulse input method description: The direction+pulse input is divided into 5V and 24V signal input methods. The use of twisted pair connection can improve anti-interference ability. In general, microcontroller controller systems often use this position control wiring method. This type of control method has a maximum input pulse frequency of 500KHz

Description of Open collector input mode at the controller end: The single end input mode can use the power supply provided inside the driver or external power supply. However, dual power inputs cannot be used to avoid damaging the drive. In general, PLC controller systems often use this position control wiring method

Open collector uses external power supply

Open collector uses internal power supply

Pulse command input can be divided into differential signal input and Open collector input. The maximum frequency of differential signal input reception is 500K, and the maximum frequency of Open collector input reception is 200K.

Differential signal input

Open collector input

6.1.3 Description of Position Control Mode Parameters

1. Motor and driver control parameters

Para code	Name	Range	Default	Description
P01-01	Control mode setting	0-6 0		0: Position mode 1: Speed mode 2: Torque mode 3: Speed, torque 4: Position, speed 5: Position, torque 6: Reserved
P03-00	Location Command Source	0-1	0	0: Pulse instruction 1: Number given
P03-01	Command pulse mode	0-3	1	0: Orthogonal pulse instruction 1: Direction+pulse command 2 or 3: Double pulse instruction

P03-02	Command pulse input terminal	0-1	0	0: Low speed pulse 1: High-speed pulse
P03-03	Instruction pulse inversion	0-1	0	Set the initial direction of motor rotation
P03-09	Number of command pulses for one revolution of the motor	0-65535	10000	Set according to user needs For details, please refer to 8.2 Parameter Description
P03-10	Molecules of electronic gear 1	1-65535	1	Set according to user needs
P03-11	Denominator of electronic gear 1	1-65535	1	For details, please refer to 8.2 Parameter Description
P03-15	Excessive position deviation setting	0-65535	30000	Set according to user needs
P03-25	Absolute value motor rotates one revolution to output pulse count	0-60000	2500	Set according to user needs

2. Gain parameter

Please refer to Chapter 7InParameter adjustment Make adjustments

6.1.4 Example of electronic gear ratio calculation

1, Ball screw drive

Eg:

(1) Mechanical parameters: reduction ratio R is 2/1, and lead screw is 10mm

(2) Absolute encoder position ring resolution per revolution: 17bit=131072

(3) Load displacement corresponding to 1 position command (command unit) required: 0.001mm 则:

According to (1) and (3), the position command (command unit) value required for 1 revolution of the lead screw (10mm movement of the workbench) is:

$$\frac{10}{0.001} = 10000$$

The electronic gear ratio is: (B is the numerator, A is the denominator)

$$\frac{B}{A} = \frac{131072}{10000} \times \frac{2}{1} = \frac{16384}{625}$$

Finally, parameter P03-10 is set to 16384, and P03-11 is set to 625 2. Belt pulley drive

Eg:

Mechanical parameters: reduction ratio R: 5/1, pulley diameter: 0.2m (pulley circumference: 0.628m)

(2) Absolute encoder position ring resolution per revolution: 17bit=131072

(3) Load displacement corresponding to 1 position command (command unit): 0.000005m

则:

According to (1) and (3), the position command (command unit) value required for the pulley (load) to rotate for 1 revolution is:

$$\frac{0.628}{0.000005}$$
 =125600

The electronic gear ratio is: (B is the numerator, A is the denominator)

$$\frac{B}{A} = \frac{131072}{125600} \times \frac{5}{1} = \frac{4096}{785}$$

Finally, parameter P03-10 is set to 4096, and P03-11 is set to 785 3、Rotating load

Eg:

(1) Mechanical parameters: reduction ratio R is 10/1, and the rotation angle of the load shaft is 360 $^{\circ}$ after one revolution

(2) Absolute encoder position ring resolution per revolution: 17bit=131072

(3) Load displacement corresponding to 1 position instruction (instruction unit): 0.01 $^{\circ}$ 则:

According to (1) and (3), the position command (command unit) value required for 1 turn of load rotation is:

$$\frac{360}{0.01} = 36000$$

The electronic gear ratio is: (B is the numerator, A is the denominator)

$$\frac{B}{A} = \frac{131072}{36000} \times \frac{10}{1} = \frac{8192}{225}$$

Finally, parameter PO3-10 is set to 8192, and PO3-11 is set to 225

6.2 Speed control

6.2.1 Speed Control Wiring Diagram

6.2.2 Description of Speed Control Mode Parameters

1. Motor and driver control parameters

Para code	Name	Range	Default	Description
P01-01	Control mode setting	0-6	1	0: Position mode 1: Speed mode 2: Torque mode 3: Speed, torque 4: Position, speed 5: Position, torque 6: Reserved
P04-00	Speed command source	0-3	0	 0: External simulation instruction 1: Digital instruction (parameter setting) 2: Digital instructions (communication) 3: Internal multiple sets of instructions
P04-01	Speed command analog quantity inversion	0-1	0	Set the initial direction of motor rotation
P04-02	Digital speed given value	-6000-6000	0	When P04-00 is set to 1, P04-02 is the speed setting value
P04-06	Forward speed limit	0-6000		Limit forward speed
P04-07	Reverse speed limit	-6000-0		Limit reverse speed
P06-40	Speed analog command input gain	10-2000	300	Set according to user needs For details, please refer to 8.2 Parameter Description

2. Gain parameter

Please refer to Chapter 7 In Parameter adjustment Make adjustments

6.3 Torque Control

6.3.1 Torque Control Wiring Diagram

6.3.2 Parameter Description of Torque Control Mode

1. Motor and driver control parameters

Para code	Name	Range	Default	Description
P01-01	Control mode setting	0-6	2	0: Position mode 1: Speed mode 2: Torque mode 3: Speed, torque 4: Position, speed 5: Position, torque 6: Reserved
P05-00	Torque command source	0-3	0	 0: External simulation command (speed limit amplitude set by P05-02) 1: Digital command (speed limit amplitude set by P05-02) 2: External simulation command (speed limit amplitude determined by speed simulation command) 3: Digital command (speed limit amplitude determined by speed analog command)
P05-01	Reverse of torque command analog quantity	0-1	0	Set the initial direction of motor rotation
P05-02	Torque mode speed limit given value	0-6000	1000	Set the maximum speed of the motor in torque mode. Valid when P05-00 is 0,1
P05-05	Torque limiting setting source	0-2	0	Source for adjusting torque limit
P05-10	Internal forward torque limit amplitude	0-300.0	200. 0	Limit forward torque value
P05-11	Internal reverse	-300.0-0	-200.0	Limit reverse torque value

	torque limit amplitude			
P06-43	Torque simulation command input gain	0-100	10	Set according to user needs For details, please refer to 8.2 Parameter Description

2. Gain parameters related to torque control commands

Please refer to Chapter 7In Parameter adjustment Make adjustments

Chapter 7 Trial Operation and Parameter Adjustment

7.1 Running test

7.1.1 Pre-run testing

In order to avoid damage to the servo driver or mechanism, please remove all loads of the servo motor before operation, carefully check whether the following precautions are normal, and then power on for no-load test; After the no-load test is normal, the load of the servo motor can be connected for the next step of testing.

Precautions:

Detection before	1,	Check the servo drive for obvious visual damage
power on	2、	Please implement insulation treatment for the connection part of the
		wiring terminal
	3、	Check if there are any foreign objects inside the drive
	4、	Servo drivers, motors, and external regenerative resistors must not
		be placed on combustible objects
	5、	To avoid the failure of the electromagnetic brake, please check
		whether the power circuit can work normally by immediately stopping
		and cutting off the power supply
	6,	Confirm whether the external power supply voltage of the servo driver
		meets the requirements
	7、	Confirm whether the power lines, encoder lines, and signal lines of
		the motors U, V, and W are connected correctly (according to the motor
		label and instructions)

Detection during	1、	Do you hear the sound of relay action when the servo driver is powered $% \left({{{\boldsymbol{x}}_{i}}} \right)$
power on		on
	2、	Whether the servo driver power indicator and LED display are normal
	3、	Confirm whether the parameter settings are correct, and unexpected
		actions may occur depending on the mechanical characteristics
		Do not make excessive and extreme adjustments to parameters
	4,	Is the servo motor self-locking
	5、	If there is vibration or excessive sound in the servo motor during
		operation, please contact the manufacturer

7.1.2 No-load trial run test

1. JoG mode no-load trial run test, users do not need to connect additional wiring. For safety reasons, before JoG no-load speed test, please fix the motor base to prevent danger caused by reaction forces caused by changes in motor speed. The following is a simple wiring diagram in JoG mode:

2. Select JoG mode for trial operation according to the following flowchart

Note: Long press and hold in trial operation mode ENT button Enter the speed editing menu. Adopt Up button, Down button and Left button To edit speed, press and hold after editing ENT button, re-enter Jog mode. Press again Up button, Down button The motor will run at the new speed The set speed will not be saved after exiting Jog mode. Please refer to8.4 Auxiliary functions

7.2 Parameter adjustment

After selecting the appropriate control mode according to the equipment requirements, it is necessary to make reasonable adjustments to the servo gain parameters. Enable the servo driver to quickly and accurately drive the motor, maximizing mechanical performance. Two

The process of gain adjustment can be carried out according to the following figure:

7.3 Manual Gain Adjustment

7.3.1 Basic parameters

When the automatic gain adjustment cannot achieve the expected effect, manual fine tuning of the gain can be performed to optimize the effect.

The servo system consists of three control loops, and the basic control block diagram is as follows:

Gain adjustment needs to follow the order of the inner loop first and then the outer loop. First, set the load moment of inertia ratio P01-04, then adjust the speed loop gain, and finally adjust the position loop gain.

Speed loop gain: Increase the setting value as much as possible without vibration and noise, which can improve the speed following performance and speed up the positioning time.

Speed loop integral time constant: The smaller the setting value, the faster the integral speed and the stronger the integral effect. If it is too small, vibration and noise will easily occur.

para code	Name	Range	set up	illustrate
P01-02	Real time automatic adjustment mode	0-3	1	0: Manually adjust the rigidity. 1: Standard mode automatically adjusts rigidity. In this mode, parameters P02-00, P02-01, P02-10, P02-11, P02-13, P02-14, and P08-20 will be automatically set based on the stiffness level set in P01-03. Manually

				adjusting these parameters will not have any
				effect. The following parameters are set by
				the user:
				P02-03 (speed feedforward gain), P02-04
				(speed feedforward smoothing constant).
				2: The positioning mode automatically
				adjusts the rigidity. In this mode,
				parameters P02-00, P02-01, P02-10, P02-11,
				P02-13, P02-14, and P08-20 will be
				automatically set based on the rigidity
				level set by PO1-O3. Manually adjusting
				these parameters will not have any effect.
				The following parameters will be fixed
				values and cannot be changed:
				P02-03 (Speed feedforward gain): 30.0%
				P02-04 (Speed feedforward smoothing
				constant): 0.50
				3: Automatic adjustment of rigidity 2. In
				this mode, parameters P02-00, P02-01,
				P02-10, P02-11, and P02-13 will be
				automatically set based on the rigidity
				level set in PO1-O3.
				The following parameters are set by the user:
				PO2-O3 (speed feedforward gain), PO2-14
				(speed Constant of integration 2), PO8-20
				(torque command filter constant 1), PO8-21
				(torque command filter constant 2)
	Real time			There are 32 built-in gain parameters that
	automatic			take effect when PO1-O2 is set to 1, 2, and
P01-03	adjustment	0-31	13	3. It can be directly called according to the
	of rigid			actual situation, and the larger the set
	settings			value, the stronger the rigidity.
	Position			The larger the set value, the higher the
P02-00	control	0-3000.0	80.0	gain, the greater the rigidity, and the
	gain 1			smaller the position hysteresis. However, if

				the value is too high, the system will
				oscillate and overshoot.
				Try to increase the value as much as possible
				without oscillation
				For gain at rest
				The larger the set value the higher the
				The farger the set value, the higher the
				gain, the greater the rigidity, and the
	Position			smaller the position hysteresis. However, if
P02-01	control	0-3000.0	80.0	the value is too high, the system will
	gain 2			oscillate and overshoot.
				Try to increase the value as much as possible
				without oscillation.
				► Gain during motion.
				The feedforward gain of the speed loop, the
				larger the parameter value, the smaller the
	Speed			system position tracking error, and the
P02-03	feedforwar	0-100.0	30.0	faster the response. However, if the
	d gain			feedforward gain is too large, it will make
				the position loop of the system unstable and
				prone to overshoot and oscillation.
	Speed			This parameter is used to set the feedforward
	feedforwar			filtering time constant of the speed loop.
P02-04	d	0-64.00	0	The larger the value, the greater the
	smoothing			filtering effect, but at the same time, the
	constant			phase lag increases.
				The larger the setting value, the greater the
				gain and rigidity. The parameter values are
	Speed			set according to the motor and load
P02-10	proportion	1-2000_0	40 0	conditions
102 10	al gain 1	1 2000.0	10. 0	Try to increase the value as much as possible
	ai gain i			without oscillation
				For gain at rost
	Volooity			The integration time constant of the grad
	Constant			ne integration time constant of the speed
D02.11	Constant	0 1 1000 0	10.0	regulator, the smaller the set value, the
P02-11	OI	0.1-1000.0	10.0	Taster the integration speed, and the
	integratio			greater the stiffness. If it is too small,
	n 1			it is prone to vibration and noise.

				· · · · · · · · · · · · · · · · · · ·
				Try to reduce this parameter value as much as possible without system oscillation. This parameter is for steady-state response
P02-12	Pseudo differenti al feedforwar d control coefficien t 1	0-100.0	100.0	When set to 100.0%, the speed loop adopts PI control, resulting in fast dynamic response; When set to 0, the speed loop integration has a significant effect and can filter low-frequency interference, but the dynamic response is slow. By adjusting this coefficient, the speed loop can have good dynamic response and increase its resistance to low-frequency interference
P02-13	Speed proportion al gain 2	1-2000.0	45.0	The larger the setting value, the greater the gain and rigidity. The parameter values are set according to the motor and load conditions. Try to increase the value as much as possible without oscillation.
P02-14	Velocity Constant of integratio n 2	0. 1–1000. 0 1000. 0		The integration time constant of the speed regulator, the smaller the set value, the faster the integration speed, and the greater the stiffness. If it is too small, it is prone to vibration and noise. Try to reduce this parameter value as much as possible without system oscillation. This parameter is for steady-state response.
P02-15	Pseudo differenti al feedforwar d control coefficien t 2	0-100. 0	100. 0	When set to 100.0%, the speed loop adopts PI control, resulting in fast dynamic response; When set to 0, the speed loop integration has a significant effect and can filter low-frequency interference, but the dynamic response is slow. By adjusting this coefficient, the speed loop can have good dynamic response and increase its resistance to low-frequency interference.

7.3.2 Gain switching

The gain switching function can be triggered by the internal state of the servo or external DI port, and is only effective in position control and speed control modes. By using gain switching, the following effects can be achieved:

Switch to a lower gain when the motor is stationary (servo enabled) to suppress vibration; Switch to a higher gain when the motor is stationary (servo enabled) to shorten the positioning time; Switch to higher gain during motor operation to achieve better command following performance; Switch different gain settings with external signals based on usage.

Related parameters

para code	name	Range	factory setting	unit	effect time
P02-30	Gain switching mode	0-10	7		Effective immediatel y

P02-31	Gain switching level	0-20000	800		Effective immediatel y
P02-32	Gain switching hysteresis	0-20000	100		Effective immediatel y
P02-33	Gain switching delay	0-1000.0	10.0	lms	Effective immediatel y
P02-34	Position gain switching time	0-1000.0	10.0	lms	Effective immediatel y

7.3.3 Feedforward function

Speed feedforward: During position control, the required speed control command is calculated from the position command and added to the output of the position regulator to reduce position deviation and improve the response of position control.

Torque feedforward: Calculate the required torque command from the speed control command and add it to the output of the speed regulator to improve the response of the speed control.

A. Speed feedforward usage operation

When the speed feedforward smoothing constant is set to 50 (0.5ms), gradually increase the speed feedforward gain to meet the system requirements. However, excessive speed feedforward gain can cause position overshoot, which can actually prolong the tuning time.

B. Torque feedforward usage operation

When the torque feedforward smoothing constant is set to 50 (0.5ms), gradually increase the torque feedforward gain to meet the system requirements.

Related parameters

para	name	Range	factory		effect
code	hume	Trange	setting	unit	time
					Effective
P02-03	Speed feedforward gain	0-100.0	30.0	1.0%	immediatel
					у
	Sund for the mount over this -				Effective
P02-04	speed reedforward smoothing	0-64.00	0.5	lms	immediatel
constant					у
					Effective
P02-19	Torque feedforward gain	0-30000	0	1.0%	immediatel
					у
	Torque feedforward amosthing				Effective
P02-20	rorque recursi ward smoothing	0-64.00	0.8	1ms	immediatel
	constant				у

7.3.4 Disturbance Observer

The interference torque value can be inferred using a disturbance observer and compensated on the torque command to reduce the impact of interference torque and reduce vibration. This observation function is effective in both position mode and speed mode.

Usage:

a) Set P08-26 (filtering constant) to a larger value, and then gradually increase P08-25 (compensation gain). At this point, the action sound may become louder; After confirming that the current compensation gain is effective, gradually reduce P08-26.

b) Increasing the gain can improve the effect of disturbance torque suppression, but the action sound becomes louder.

c) After reducing the filter time constant, it can be inferred that there is less delay in disturbance torque, and it can improve the effectiveness of suppressing disturbance effects, but the action sound will become louder.

d) Please find a setting with good balance.

Related parameters

para code	name	Range	factory setting	unit	effect time
P08-25	Disturbance torque compensation gain	0-100.0	0	%	Effective immediate ly
P08-26	Disturbance torque filtering time	0-25.00	0.8	lms	Effective

constant		immediate
		ly

7.3.5 Suppression of Machine Resonance

If the servo system is too rigid and responds too quickly, it may cause resonance in the mechanical system, which can be improved by reducing the gain of the control circuit. Resonance suppression can also be achieved by using low-pass filters and notch filters without reducing the gain.

1. Resonance frequency detection

The resonance frequency of the mechanical system can be observed through monitoring items d26.1. Fr and d28.2. Fr

2. Torque command low-pass filter (P08-20)

Low pass filters can be used in situations where the vibration frequency will shift, and can have good results when used in high-frequency vibration. By setting the filter time constant to attenuate resonance near the resonance frequency. However, the low-pass filter will make the system phase lag, reduce the bandwidth, and the reduction of Phase margin is easy to cause loop oscillation. Therefore, it can only be applied in high-frequency vibration situations.

Filter cutoff frequency	(Hz)=1/(2 *	* pi * p0	8-20 (ms)	* 0.001)
-------------------------	-------------	-----------	-----------	----------

para code	name	Range	factory setting	unit	effect time
P08-20	Torque command filtering constant	0-25.00	0.8	lms	Effective immediate ly

3. Notch filter

The notch filter is used when the resonance frequency of the system is fixed. The notch filter can suppress mechanical resonance by reducing the gain at a specific frequency. After setting the notch filter correctly, vibration can be effectively suppressed, and further increasing the servo gain can be attempted. The servo is equipped with 4 sets of notch filters. When P08-11 is set to 0, 4 sets of notch filters can be activated simultaneously and parameters can be manually input.

A. Adaptive notch filter mode

By using the adaptive notch filter function module, the servo system will automatically recognize the current resonance frequency and configure notch filter parameters. Usage steps:

a) Set P08-11 to 1 or 2 based on the number of resonance points. When resonance occurs, you can first set P08-11 to 1 and turn on an adaptive notch filter. After adjusting the gain, if a new resonance occurs, then set P08-11 to 2 and turn on two adaptive notch filters.

b) During servo operation, the parameters of the third and fourth groups of notch filters will be automatically updated and the corresponding function code will be automatically stored every 30 minutes. After storage, the notch filter parameters will also be maintained after power failure.

c) If resonance is suppressed, it indicates that the adaptive notch filter has achieved an effect. After waiting for the servo to run stably for a period of time, set P08-11 to 0, and the notch filter parameters will be fixed to the last updated value. This operation can prevent the trap parameters from being updated to incorrect values due to misoperation during servo operation, which can exacerbate the vibration situation.

d) If the vibration cannot be eliminated for a long time, please turn off the servo enable in a timely manner.

If the resonance frequency points exceed 2, the adaptive notch filter cannot meet the demand, and manual notch filters can be used simultaneously.

Related	parameters
---------	------------

para code	name	illustrate
P08-11	Adaptive notch filter Mode selection	Setting range: 0-4 0: The parameters of the third and fourth notch filters are no longer automatically updated and are saved as the current values. But manual input is allowed 1: 1 adaptive notch filter is effective, and the parameters of the third notch filter are automatically updated and cannot be manually inputted 2: Two adaptive notch filters are effective, and the parameters of the third and

		fourth notch filters are automatically updated and cannot be manually inputted
		3: Only detect resonance frequency
		4: Clear the parameters of the third and fourth notch filters and restore them to
		the factory settings
	Adaptive notch	Setting range: 0-7
P08-13	filter vibration	This parameter sets the vibration detection sensitivity of the adaptive notch
	detection	filter, and the smaller the parameter value, the more sensitive the detection
	threshold	sensitivity is

B. Manually setting trap parameters

a) The resonance frequency of the mechanical system can be observed through monitoring items d26.1. Fr and d28.2. Fr.

b) Input the resonance frequency observed in the previous step into the parameters of the notch filter, and simultaneously input the width level and depth level of the group of notch filters.

c) If the vibration is suppressed, it indicates that the notch filter is working. You can continue to increase the gain and repeat the previous 2 steps when new vibrations appear.

d) If the vibration cannot be eliminated for a long time, please turn off the servo enable in a timely manner.

C. Notch width level

Notch width rating = Notch width
Notch center
frequency

The notch width represents the frequency bandwidth with an amplitude attenuation rate of -3dB relative to the notch center frequency

D. Notch depth level

Notch depth level =

Input value

Output value

When the depth level of the notch filter is 0, the input is completely suppressed at the center frequency; When the depth level is 100, the input can pass completely at the center frequency.

Notch filter frequency characteristics

Related parameters

para code	name	illustrate
P08-30	Notch Filter 1 frequency	Setting range: 300-5000, unit: Hz Center frequency of notch filter 1 When set to 5000, the notch filter is invalid
P08-31	Notch Filter 1 width	Setting range: 0-20 Notch width level of notch filter 1 Is the ratio of width to center frequency
P08-32	Notch Filter 1 depth	Setting range: 0-99 Notch depth level of notch filter 1 The ratio relationship between the input and output of the center frequency of the notch filter The larger this parameter, the smaller the notch depth, and the weaker the effect

Trap related parameters

para code	name	Range	factory setting	unit	effect time
P08-11	Adaptive notch filter mode selection	0-4	0		Effective

					immediatel
					у
	A dansing and the filter without in				Effective
P08-13	detection threshold	1-7	4		immediatel
	detection infestion				у
					Effective
P08-31	Notch Filter 1 Width	0-20	2		immediatel
					у
					Effective
P08-32	Notch Filter 1 Depth	0-99	0		immediatel
					у
					Effective
P08-33	Notch filter 2 frequency	300-5000	5000	HZ	immediatel
					у
					Effective
P08-34	Notch filter 2 width	0-20	2		immediatel
					у
					Effective
P08-35	Notch Filter 2 Depth	0-99	0		immediatel
					у
					Effective
P08-36	Notch filter 3 frequency	300-5000	5000	HZ	immediatel
					у
					Effective
P08-37	Notch filter 3 width	0-20	2		immediatel
					у
					Effective
P08-38	Notch Filter 3 Depth	0-99	0		immediatel
					у
D09.20	Natal filter 4 from	200 5000	5000	117	Effective
P08-39	Noten filter 4 frequency	300-5000	5000	riz.	immediatel

				у
				Effective
P08-40	Notch filter 4 width	0-20	2	 immediatel
				у
				Effective
P08-41	Notch Filter 4 Depth	0-99	0	 immediatel
				У

Chapter 8 Parameters and Functions

8.1 Parameter List

- P00-xx represents motor and driver parameters
- P01-xx main control parameters
- P02-xx represents gain class parameters
- P03-xx represents the position parameter
- P04-xx represents the speed parameter
- P05-xx represents torque parameter

P06-xx represents I/O parameters

P08-xx represents advanced functional parameters

Туре	para code	name	Range	factory setting	unit	effect time	para code
			0-65535	2000		Shutdown	Power on
	P00-00	Motor number		2000		setting	again
	D00.01	Rated speed of motor	1-6000		rpm	Shutdown	Power on
	P00-01					setting	again
	D 00.02		0.01-655.35			Shutdown	Power on
	P00-02	Rated torque of motor			IN.IM	setting	again
	D 00.02	Mater water i annual	0.01 655 25			Shutdown	Power on
Motor	P00-03	Motor rated current	0.01-055.55		A	setting	again
and	D 00.04	Motor Moment of inertia	0.01 655 25		1	Shutdown	Power on
driver	P00-04		0.01-655.35		kg.cm2	setting	again
parame	P00-05	Number of motor poles	1.21		pole-pai	Shutdown	Power on
ters			1-31		rs	setting	again
	P00-07	Encoder selection	0-3		Shutdown	Power on	
						setting	again
	P00-08	Provincial incremental	0-1			Shutdown	Power on
		encoder	0-1		setting	again	
	P00-09	Absolute value encoder	0-2			Shutdown	Power on
		type				setting	again
	P00-10	Number of incremental	0-65535			Shutdown	Power on
		encoder lines				setting	again
	P00-11	Incremental encoder Z	0 (5525			Shutdown	Power on
		pulse electrical angle	0-65535			setting	again
	D00 12	Initial angle of metan 1	0.260		10	Shutdown	Power on
	P00-12	Initial angle of rotor 1	0-300		1	setting	again
	D00 12		0.260		1°	Shutdown	Power on
	P00-13	initial angle of rotor 2	0-360			setting	again
	P00-14	Initial angle of rotor 3	0-360		1°	Shutdown	Power on

Motor and						setting	again
	P00-15	Initial angle of rotor 4	0-360		1°	Shutdown	Power on
						setting	again
driver	D 00.14		0-360		1°	Shutdown	Power on
parame	P00-16	Initial angle of rotor 5				setting	again
ters	D00 17		0.260		1°	Shutdown	Power on
	P00-17	Initial angle of rotor 6	0-360			setting	again
	P00-18	Motor code display	0-200			Display	Display
	D00 20	Power on interface display	0.100	100		Run	Power on
	P00-20	settings	0-100			Settings	again
	D00 21	RS232 communication	0.2			Run	Power on
	P00-21	Baud	0-3	2		Settings	again
	D00 22	S1	0.055	1		Run	Power on
	P00-23	Slave address 0	0-255			Settings	again
	P00-24	Modbus communication	0-7	2		Run	Power on
		Baud				Settings	again
	P00-25	Varification method	0.3	0		Run	Power on
		verification method	0-5			Settings	again
	P00-26	Modbus communication	0-100	0	1ms	Run	Power on
		response delay				Settings	again
	P00-28	Torque control Modbus	0-2	1		Run	Power on
		communication				Settings	again
		compatibility settings				8-	8
	P00-29	Modbus absolute encoder	0-1	0		Run	Power on
		feedback format				Settings	again
	P00-30 P00-31	Braking resistor setting 0-2	0-2			Run	Power on
-						Settings	again
		External braking resistor			10W	Run	Effective
		power	0-65535			Settings	immediate
		•					ly
	P00-32	External braking	0-1000		1 ohm	Run	Power on
		resistance value				Settings	again
---------------------------	--------	--	----------	----	-----	------------------	------------------------------
	P00-33	Regenerative open circuit and short circuit detection enable	0-1	0		Run Settings	Power on again
	P00-40	Over temperature protection settings	0-3	1		Shutdown setting	Power on again
	P00-41	Control power failure protection settings	0-1	1		Run Settings	Power on again
	P00-46	Speed inconsistency alarm detection time setting	0-65535	0	lms	Run Settings	Effective immediate ly
	P01-01	Control mode setting	0-6	0		Shutdown setting	Effective immediate ly
	P01-02	Real time automatic adjustment mode	0-3	1		Run Settings	Effective immediate ly
Main control parame	P01-03	Real time automatic adjustment of rigid settings	0-31	13		Run Settings	Effective immediate ly
ters	P01-04	Moment of inertia ratio	0-100.00	3	1倍	Run Settings	Effective immediate ly
	P01-10	Control mode after overtravel	0-1	1		Run Settings	Effective immediate ly
	P01-20	Dynamic brake delay	0-250	50	lms	Run Settings	Effective immediate ly
Main control	P01-21	Prohibit dynamic brakes when the main power	0-1	1		Run Settings	Effective immediate

parame		supply is turned off					ly
ters	P01-22	Prohibit dynamic brake when servo is OFF	0-1	1		Run Settings	Effective immediate ly
	P01-23	Prohibit dynamic brakes during alarm	0-1	1		Run Settings	Effective immediate ly
	P01-24	Prohibit dynamic brake during overtravel	0-1	1		Run Settings	Effective immediate ly
	P01-30	Holding brake command - servo OFF delay time (holding brake opening delay)	0-255	100	lms	Run Settings	Effective immediate ly
	P01-31	Speed limit value of holding brake command output	0-3000	100	1rpm	Run Settings	Effective immediate ly
	P01-32	Servo OFF holding brake command waiting time	0-255	100	lms	Run Settings	Effective immediate ly
	P01-35	Z signal width setting	0-10000	0	0.1ms	Run Settings	Effective immediate ly
	P01-40	Loss of control detection enable	0-1	0		Run Settings	Effective immediate ly
	P02-00	Position control gain 1	0-3000.0	48.0	1/S	Run Settings	Effective immediate ly
	P02-01	Position control gain 2	0-3000.0	57.0	1/S	Run Settings	Effective immediate

							ly
Gain class parame ters	P02-03	Speed feedforward gain	0-100.0	30.0	1.0%	Run Settings	Effective immediate ly
	P02-04	Speed feedforward smoothing constant	0-64.00	0.5	lms	Run Settings	Effective immediate ly
	P02-10	Speed proportional gain 1	1.0-2000.0	27.0	1Hz	Run Settings	Effective immediate ly
	P02-11	Velocity Constant of integration 1	0.1-1000.0	10.0	lms	Run Settings	Effective immediate ly
	P02-12	Pseudo differential feedforward control coefficient 1	0-100.0	100.0	1.0%	Run Settings	Effective immediate ly
	P02-13	Speed proportional gain 2	1.0-2000.0	27.0	1Hz	Run Settings	Effective immediate ly
	P02-14	Velocity Constant of integration 2	0.1-1000.0	1000.0	lms	Run Settings	Effective immediate ly
	P02-15	Pseudo differential feedforward control coefficient 2	0-100.0	100.0	1.0%	Run Settings	Effective immediate ly
	P02-16	Speed integration error limit amplitude	0-32767	25000		Shutdown setting	Effective immediate ly
	P02-19	Torque feedforward gain	0-30000	0	1.0%	Run Settings	Effective immediate ly

P02-20	Torque feedforward smoothing constant	0-64.00	0.8	1ms	Run Settings	Effective immediate ly
P02-30	Gain switching mode	0-10	7		Run Settings	Effective immediate ly
P02-31	Gain switching level	0-20000	800		Run Settings	Effective immediate ly
P02-32	Gain switching hysteresis	0-20000	100		Run Settings	Effective immediate ly
P02-33	Gain switching delay	0-1000.0	10.0	1ms	Run Settings	Effective immediate ly
P02-34	Position gain switching time	0-1000.0	10.0	1ms	Run Settings	Effective immediate ly
P02-40	Mode switch selection	0-4	0		Run Settings	Effective immediate ly
P02-41	Mode switch level	0-20000	10000		Run Settings	Effective immediate ly
P02-50	Torque command addition value	-100.0-100.0	0	1.0%	Run Settings	Effective immediate ly
P02-51	Forward torque compensation	0-100.0	0	1.0%	Run Settings	Effective immediate ly
P02-52	Reverse torque	-100.0-0	0	1.0%	Run	Effective

		compensation				Settings	immediate
		compensation				Settings	hr hr
	P02-59	Gain matching mode	0-1	0		Run Settings	Effective immediate ly
	P03-00	Location Command Source	0-1	0		Shutdown setting	Effective immediate ly
	P03-01	Command pulse mode	0-3	1		Shutdown setting	Effective immediate ly
	P03-02	Command pulse input terminal	0-1	0		Shutdown setting	Effective immediate ly
	P03-03	Instruction pulse inversion	0-1	0		Run Settings	Effective immediate ly
Positio nal	P03-04	Position pulse filtering	0-500	0		Run Settings	Effective immediate ly
parame ters	P03-05	Positioning completion judgment conditions	0-2	1		Run Settings	Effective immediate ly
	P03-06	Positioning completion scope	0-65535	100	Encode r unit	Run Settings	Effective immediate ly
	P03-07	Position feedback format	0-1	0		Shutdown setting	Effective immediate ly
	P03-09	Number of command pulses for one revolution	0-65535	10000	Pulse	Run Settings	Power on again

		of the motor					
						P	
	P03-10	Molecules of electronic	1-65535	1		Run	Power on
		gear l				Settings	agaın
	P03-11	Denominator of electronic	1-65535	1		Run	Power on
		gear 1				Settings	again
	P03-12	Molecular height 16 bits	0-32767	0		Run	Power on
	105-12	of electronic gear 1	0.32101	•		Settings	again
	P02 12	Molecules of electronic	1 65525	1		Run	Power on
	105-15	gear 2	1-05555	1		Settings	again
	D02.14	Denominator of electronic	1 (5525			Run	Power on
	P03-14	gear 2	1-65535	1		Settings	again
Positio		.			Instruct	P	Effective
nal	P03-15	Excessive position	0-65535	30000	ion unit	Run	immediate
parame		deviation setting			* 10	Settings	ly
ters	P03-16	Position instruction	0-1000.0				Effective
		smoothing filtering time		0	lms	Run	immediate
		constant				Settings	ly
	P03-20		0-3				Effective
		Position loop feedback		0		Run	immediate
		source		-		Settings	ly
		Incremental encoder					Effective
	P03-22	output pulse division ratio	1-65535	1		Run	immediate
		numerator				Settings	ly
		Incremental encoder					Effective
	P03-23	output pulse division ratio	1-65535	1		Run	immediate
		denominator		-		Settings	lv
		Absolute value motor					Effective
	P03-25	rotates one revolution to	0-60000	2500		Run	immediate
	105-25	output pulse count	0-00000	2300		Settings	157
		Payarsa phasa of Lincor				Shutdown	iy Effective
	P03-30	t the second second second second	0-1	0		Silutiown	Enecuve
		encoder				setting	immediate

					ly
P03-31	Polarity of Z pulse of Linear encoder	0-1	1	 Shutdown setting	Effective immediate ly
P03-40	Output pulse source	0-3	1	 Shutdown setting	Effective immediate ly
P03-41	AB signal output inverted	0-1	0	 Shutdown setting	Effective immediate ly
P03-42	Output Z pulse polarity	0-1	1	 Shutdown setting	Effective immediate ly
P03-43	Pulse signal edge selection	0-1	0	 Run Settings	Effective immediate ly
P03-45	Digital Position Instruction Caching Method	0-1	0	 Shutdown setting	Effective immediate ly
P03-46	Maximum motor speed during digital position command operation	0-6000	1000	 Run Settings	Effective immediate ly
P03-58	Origin setting high order (circle value)	0-65536		 显示	显示
P03-59	Low position of origin setting (single turn value)	0-65536		 显示	显示
P03-60	Origin regression enable control	0-6	0	 Run Settings	Effective immediate ly
P03-61	Origin regression mode	0-9	0	 Run Settings	Effective immediate

							1
	P03-65	Speed when searching for the origin switch_high	0-1000	100		Run Settings	Effective immediate
	P03-66	Speed Speed when searching for the origin switch_low speed	0-200	10		Run Settings	Effective immediate ly
	P03-67	Search for acceleration and deceleration time of the origin switch	0-5000	0		Run Settings	Effective immediate ly
	P03-68	Maximum time limit for searching for origin	0-65550	0		Run Settings	Effective immediate ly
	P04-00	Speed command source	0-3	0		Shutdown setting	Effective immediate ly
Speed parame	P04-01	Speed command analog quantity inversion	0-1	0		Shutdown setting	Effective immediate ly
ters	P04-02	Digital speed given value	-6000-6000	0	1rpm	Run Settings	Effective immediate ly
	P04-03	Zero speed position clamping function	0-1	0		Run Settings	Effective immediate ly
Speed parame	P04-04	Zero speed position clamping speed limit	0-6000	30	1rpm	Run Settings	Effective immediate ly
ters	P04-05	Overspeed alarm value	0-6500	6400	1rpm	Run Settings	Effective

						ly
P04-06	Forward speed limit	0-6000	5000	1rpm	Run Settings	Effective immediate ly
P04-07	Reverse speed limit	-6000-0	-5000	1rpm	Run Settings	Effective immediate ly
P04-10	Zero speed detection value	0-200.0	2	1rpm	Run Settings	Effective immediate ly
P04-11	Rotation detection value	0-200.0	30	1rpm	Run Settings	Effective immediate ly
P04-12	Speed consistent amplitude	0-200.0	30	1rpm	Run Settings	Effective immediate ly
P04-14	Acceleration time	0-10000	0	1ms/10	Run Settings	Effective immediate ly
P04-15	Deceleration time	0-10000	0	00rpm	Run Settings	Effective immediate ly
P04-30	Internal setting speed 1	-6000-6000	0	1rpm	Run Settings	Effective immediate ly
P04-31	Internal setting speed 2	-6000-6000	0	1rpm	Run Settings	Effective immediate ly
P04-32	Internal setting speed 3	-6000-6000	0	1rpm	Run Settings	Effective immediate ly

	P04-33	Internal setting speed 4	-6000-6000	0	lrpm	Run Settings	Effective immediate ly
	P04-34	Internal setting speed 5	-6000-6000	0	lrpm	Run Settings	Effective immediate ly
	P04-35	Internal setting speed 6	-6000-6000	0	lrpm	Run Settings	Effective immediate ly
	P04-36	Internal setting speed 7	-6000-6000	0	lrpm	Run Settings	Effective immediate ly
	P04-37	Internal setting speed 8	-6000-6000	0	lrpm	Run Settings	Effective immediate ly
	P05-00	Torque command source	0-3	0		Shutdown setting	Effective immediate ly
	P05-01	Reverse of torque command analog quantity	0-1	0		Shutdown setting	Effective immediate ly
Torque parame ters	P05-02	Torque mode speed limit given value	0-5000	1500	lrpm	Run Settings	Effective immediate ly
	P05-03	Digital torque value	0-300.0	0	1.0%	Run Settings	Effective immediate ly
	P05-05	Torque limiting setting source	0-2	0		Shutdown setting	Effective immediate ly
	P05-06	Torque limit detection	0-10000	0	ms	Run	Effective

		output delay				Settings	immediate
							ly
	P05-10	Internal forward torque limit amplitude	0-300.0	200.0	1.0%	Run Settings	Effective immediate ly
	P05-11	Internal reverse torque limit amplitude	-300-0	-200.0	1.0%	Run Settings	Effective immediate ly
	P05-12	External forward torque limit amplitude	0-300.0	100.0	1.0%	Run Settings	Effective immediate ly
	P05-13	External reverse torque limit amplitude	-300-0	-100.0	1.0%	Run Settings	Effective immediate ly
	P06-00	DI1 input port effective level	0-4	0		Run Settings	Power on again
	P06-01	DI1 input port function selection (factory: servo ON)	0-24	1		Run Settings	Power on again
	P06-02	DI2 input port effective level	0-4	0		Run Settings	Power on again
	P06-03	DI2 input port function selection (factory: alarm clear)	0-24	2		Run Settings	Power on again
	P06-04	DI3 input port effective level	0-4	0		Run Settings	Power on again
	P06-05	DI3 input port function selection (factory: forward overtravel)	0-24	3		Run Settings	Power on again
I/O	P06-06	DI4 input port effective level	0-4	0		Run Settings	Power on again

parame ters	P06-07	DI4 input port function selection (factory: reverse overtravel)	0-24	4	 Run Settings	Power on again
	P06-08	DI5 input port effective level	0-4	0	 Run Settings	Power on again
	P06-09	DI5 input port function selection (factory: forward rotation side external torque limit)	0-24	7	 Run Settings	Power on again
	P06-10	DI6 input port effective level	0-4	0	 Run Settings	Power on again
	P06-11	DI6 input port function selection (Factory: External torque limit on reverse side)	0-24	8	 Run Settings	Power on again
	P06-12	DI7 input port effective level	0-4	0	 Run Settings	Power on again
	P06-13	DI7 input port function selection (factory: control mode switching)	0-24	5	 Run Settings	Power on again
	P06-16	DI8 input port effective level	0-4	0	 Run Settings	Power on again
I/O parame ters	P06-17	DI8 input port function selection (factory: position command reset)	0-24	16	 Run Settings	Power on again
	P06-20	Effective level of DO1 output port	0-1	1	 Run Settings	Power on again
	P06-21	DO1 output port function selection (factory: servo ready)	0-13	3	 Run Settings	Power on again
	P06-22	Effective level of DO2	0-1	1	 Run	Power on

	output port				Settings	again
P06-23	DO2 output port function selection (factory: holding brake open)	0-13	2		Run Settings	Power on again
P06-24	Effective level of DO3 output port	0-1	1		Run Settings	Power on again
P06-25	DO3 output port function selection (factory: alarm output)	0-13	1		Run Settings	Power on again
P06-26	Effective level of DO4 output port	0-1	1		Run Settings	Power on again
P06-27	DO4 output port function selection (factory: positioning completed)	0-13	4		Run Settings	Power on again
P06-28	Effective level of DO5 output port	0-1	1		Run Settings	Power on again
P06-29	DO5 output port function selection (factory: torque limit detection)	0-13	8		Run Settings	Power on again
P06-40	Speed analog command input gain	10-2000	300	1rpm/V	Run Settings	Effective immediate ly
P06-41	Speed simulation command filtering constant	0-64.00	0.8	lms	Run Settings	Effective immediate ly
P06-42	Speed simulation instruction offset	-10.000 -10.000	0	1V	Run Settings	Effective immediate ly
P06-43	Torque simulation command gain	0.0-100.0	10	%	Run Settings	Effective immediate ly

	P06-44	Torque simulation instruction filtering constant	0-64.00	0.8	lms	Run Settings	Effective immediate ly
	P06-45	Torque simulation instruction offset	-10.000 -10.000	0	1V	Run Settings	Effective immediate ly
	P06-46	Speed simulation instruction dead band	0-10.000	0	1V	Run Settings	Effective immediate ly
	P06-47	Torque simulation instruction dead band	0-10.000	0	1V	Run Settings	Effective immediate ly
	P08-01	Load rotation convention identification mode	0-1	0		Run Settings	Effective immediate ly
	P08-02	Inertia identification maximum speed	100-2000	800	lrpm	Run Settings	Effective immediate ly
Advan	P08-03	Inertia identification acceleration and deceleration time	20-800	100	lms	Run Settings	Effective immediate ly
ced functio nal parame ters	P08-04	Waiting time after single inertia identification completion	50-10000	1000	lms	Run Settings	Effective immediate ly
	P08-05	Number of motor rotations required to complete a single moment of inertia		1.33	圈	Run Settings	只读
	P08-11	Adaptive notch filter mode selection	0-4	0		Run Settings	Effective immediate ly
	P08-13	Adaptive notch filter	1-7	3		Run	Immediat

		vibration detection threshold				Settings	ely+
	P08-17	Speed observer	0-2	0		Run Settings	Effective immediate ly
	P08-19	Feedback speed low-pass filtering constant	0-25.00	0.8	lms	Run Settings	Effective immediate ly
Advan ced functio	P08-20	Torque command filtering constant 1	0-25.00	0.8	lms	Run Settings	Effective immediate ly
nal parame ters	P08-21	Torque command filtering constant 2	0-25.00	0.8	lms	Run Settings	Effective immediate ly
	P08-25	Disturbance torque compensation gain	0-100.0	0	%	Run Settings	Effective immediate ly
	P08-26	Disturbance torque filtering time constant	0-25.00	0.8	lms	Run Settings	Effective immediate ly
	P08-30	Notch Filter 1 Frequency	300-5000	5000	HZ	Run Settings	Effective immediate ly
	P08-31	Notch Filter 1 Width	0-20	2		Run Settings	Effective immediate ly
	P08-32	Notch Filter 1 Depth	0-99	0		Run Settings	Effective immediate ly
	P08-33	Notch filter 2 frequency	300-5000	5000	HZ	Run Settings	Effective immediate

						ly
P08-34	Notch filter 2 width	0-20	2		Run Settings	Effective immediate ly
P08-35	Notch Filter 2 Depth	0-99	0		Run Settings	Effective immediate ly
P08-36	Notch filter 3 frequency	300-5000	5000	HZ	Run Settings	Effective immediate ly
P08-37	Notch filter 3 width	0-20	2		Run Settings	Effective immediate ly
P08-38	Notch Filter 3 Depth	0-99	0		Run Settings	Effective immediate ly
P08-39	Notch filter 4 frequency	300-5000	5000	HZ	Run Settings	Effective immediate ly
P08-40	Notch filter 4 width	0-20	2		Run Settings	Effective immediate ly
P08-41	Notch Filter 4 Depth	0-99	0		Run Settings	Effective immediate ly

8.2 Parameter Description

8.2.1 P00-xx motor and driver parameters

para	name	11
code		Inustrate

		Factory set, no need to set
	Motor number	0: P0-01 to P0-17 works
P00-00		2000: Absolute value encoder motor, at this time P0-01- to P0-05 are
		automatically recognized by the driver
		Setting range: 1-6000. unit: rpm
P00-01	Rated speed of motor	Factory set, no need to set
		Setting range: 0.01-655.35, unit: N.M
P00-02	Rated torque of motor	According to the equipped motor settings, it has been set at the factory
		Setting range: 0.01-655.35, unit: A
P00-03	Motor rated current	According to the equipped motor settings, it has been set at the factory
	Motor Moment of	Setting range: 0.01-655.35, unit: kg.cm ²
P00-04	inertia	According to the equipped motor settings, it has been set at the factory
	Number of motor	Setting range: 1-31. unit: opposite pole
P00-05	poles	According to the equipped motor settings, it has been set at the factory
	r	Setting range: 0-3
	Encoder selection	1: Incremental encoder;
P00-07		2: Single turn absolute value encoder;
		3: Multi turn absolute value encoder;
	D · · 1	Setting range: 0-1
P00-08	Provincial	0: Non provincial
	incremental encoder	1: Provincial line type
		Setting range: 0-1
D 00_00	Absolute value	0: Tama River encoder;
P00-09	encoder type	1: Nikon encoder
		2: Cancel multi loop overflow alarm
	Number of	
P00-10	incremental encoder	According to the equipped motor settings, it has been set at the factory
	lines	
	Incremental encoder	
P00-11	Z pulse electrical	According to the equipped motor settings, it has been set at the factory
	angle	
P00-12	Initial angle of rotor 1	According to the equipped motor settings, it has been set at the factory
P00-13	Initial angle of rotor 2	According to the equipped motor settings, it has been set at the factory
P00-14	Initial angle of rotor 3	According to the equipped motor settings, it has been set at the factory

P00-15	Initial angle of rotor 4	According to the equipped motor settings, it has been set at the factory
P00-16	Initial angle of rotor 5	According to the equipped motor settings, it has been set at the factory
P00-17	Initial angle of rotor 6	According to the equipped motor settings, it has been set at the factory
		Setting range: 0-100, default 100
		Set according to customer display needs
		When set to 100, the operating status is displayed when the driver is
D 00 D 0	Power on interface	powered on
P00-20	display settings	Set the serial numbers of other parameter settings corresponding to the
		monitoring item list (Chapter 8.3)
		For example, when the customer needs to drive and display the motor
		speed d08.F.SP when powered on, the parameter is set to 8
		Setting range: 0-3 default 2
	R\$232	Select Baud when communicating with PC
D00 21		0:9600
P00-21	communication Baud selection	1: 19200
		2: 57600
		3: 115200
D00 22	CI 11	Setting range: 0-255, default 1
P00-23	Slave address	Set according to equipment requirements
		Setting range: 0-7, default 2
	Mallur	0:2400
		1: 4800
		2: 9600
P00-24	i di D 1	3: 19200
	communication Baud	4: 38400
		5: 57600
		6: 115200
		7: 25600
		Set range 0-3, default 0
		0: No verification, 2-bit stop bit
P00-25	Verification method	1: Even parity, 1-bit stop bit
		2: Odd parity, 1-bit stop bit
		3: No verification, 1-bit stop bit

	N 11	Setting range: 0-100, default 0
	Wiodous	When the parameter is set to 0, it responds according to standard
P00-26	communication	communication. When the parameter is set to a value, the Modbus
	response delay	communication response time responds according to the set time
		Setting range: 0-2, default 1
		0: Reserved
P00-28	Modbus compatible	1: Default method
		2: Compatible with Delta addresses (OX118 and 16E addresses)
		Setting range: 0-1, default 0,
	Modbus absolute	Read the absolute position value 84D/84E through 485
P00-29	encoder feedback	0.94D is the simple value 94E is the single simple value
	format	0.04D is the circle value, 64D is the single circle value
		1: 84D is the single lap value, 84E is the lap value
		Setting range: 0-2
P00-30	Braking resistor	0: Use built-in resistor
	setting	1: Using an external resistor
		2: Not using braking resistors
	External braking resistor power	Setting range: 0-65535, unit: 10W
P00-31		According to the correct setting of the external braking resistor, for
		example, if the setting value is 4, the resistance power is 40W
D00 22	External braking	Setting range: 0-1000, in ohms
F00-32	resistance value	Correctly set according to the external braking resistor
	Regenerative open	Setting range: 0-1
D00 22	circuit and short	0: Turn off regeneration open circuit and short circuit detection
F00-33	circuit detection	1. English regeneration open circuit and short circuit detection
	enable	1. Enable regeneration open circuit and short circuit detection
		Setting range: 0-1
		0: Turn off overtemperature protection function
P00-40	Over temperature	1: Using the internal temperature sensor of the module
	protection settings	2: Using an external temperature sensor
		3: Automatic recognition of temperature sensors
		Setting range: 0-1
	~	0: Turn off the power failure protection function of the control power
P00-41	Control power failure	supply
	protection settings	1: Turn on the power failure protection function of the control power
		supply
P00-46	Speed inconsistency	Setting range: 0-65535 Unit: ms

alarm detection time	0: Turn off the speed inconsistency alarm detection protection function
setting	1~65535: Set the speed inconsistency alarm detection time. When the
	speed error reaches the P04-12 setting and the time reaches the set time, the
	driver will alarm AL.423

8.2.2 P01-xx main control parameters

para code	name	illustrate				
		Setting range	e: 0-6			
		0: Position c	ontrol mode			
		1: Speed cor	ntrol mode			
		2: Torque co	ntrol mode			
		3: Speed and	l torque control modes. Y	ou need to use an externation	al input port	
		in CN1 to sv	vitch between the selecte	d DI port Input Port Fu n	iction	
		SelectionSet	t to 5 (control mode swite	ching). Control the logica	l state of the	
		port to swite	h control mode.			
			Terminal logic	control model		
			Effective	Speed mode		
			Ineffective	Torque mode		
P01-01	Control mode setting	4: Position a	nd speed control modes.	You need to use an exter	nal input port	
		in CN1 to switch between the selected DI port Input Port Function				
		Selection Set to 5 (control mode switching). Control the logical state of the				
		port to swite	h control mode.			
			Terminal logic	control model		
			Effective	Position mode		
			Ineffective	Speed mode		
		5: Position a	nd torque control mode.	You need to use an extern	nal input port	
		in CN1 to sv	vitch between the selecte	d DI port Input Port Fu	nction	
		Selection Se	et to 5 (control mode swit	ching). Control the logic	al state of the	
		port to switc	h control mode.			
			Terminal logic	control model		

			Effective	Position mode		
			Ineffective	Torque mode		
		6: Reserved				
		Setting rang	Setting range: 0-2			
		0: Manually	adjust the rigidity.			
		1: Standard	mode automatically adjus	sts rigidity. In this mode,	parameters	
		P02-00, P02	-01, P02-10, P02-11, P02	2-13, P02-14, and P08-20	will be	
		automaticall	y set based on the stiffne	ss level set in P01-03. M	anually	
		adjusting the	ese parameters will not ha	ave any effect. The follow	wing	
		parameters a	re set by the user:			
		P02-03 (spe	ed feedforward gain), P02	2-04 (speed feedforward	smoothing	
		constant).				
		2: The positi	oning mode automaticall	y adjusts the rigidity. In	this mode,	
DOI 03	Real time automatic	parameters I	P02-00, P02-01, P02-10,	P02-11, P02-13, P02-14,	and P08-20	
P01-02	adjustment mode	will be automatically set based on the rigidity level set by P01-03				
		Manually adjusting these parameters will not have any effect. The				
		following parameters will be fixed values and cannot be changed:				
		P02-03 (Speed feedforward gain): 30.0%				
		P02-04 (Spe	ed feedforward smoothin	ng constant): 0.50		
		3: Automatio	e adjustment of rigidity 2	. In this mode, parameter	rs P02-00,	
		P02-01, P02	-10, P02-11, and P02-13	will be automatically set	based on the	
		rigidity leve	l set in P01-03.			
		The followin	ng parameters are set by t	he user: P02-03 (speed f	eedforward	
		gain), P02-1	4 (speed Constant of inte	gration 2), P08-20 (torqu	e command	
		filter consta	nt 1), P08-21 (torque com	mand filter constant 2)		
		Setting rang	e: 0-31			
	Real time automatic	There are 32	built-in gain parameters	that take effect when P0	1-02 is set to	
P01-03	adjustment of rigid	1, 2, and 3. I	t can be directly called a	ccording to the actual sit	uation, and	
	settings	the larger the	e set value, the stronger t	he rigidity.		
	Moment of inertia	Setting rang	e: 0-100, unit: times			
P01-04	ratio	Set the load	inertia ratio of the corres	ponding motor as follow	s:	

		P01-04=load inertia/motor Moment of inertia
		This inertia ratio can be written into the parameters using the AF-J-L
		automatic inertia recognition value
		Setting range: 0-1
	Control mode after	0: After overtravel, the motor is in a free state and only receives signals in
P01-10	Control mode after	the opposite direction for operation
	overtravel	1: After overtravel, the motor is in a locked state and only receives signals
		in the opposite direction for operation
		Setting range: 0-150, unit: ms
P01-20 Dynamic brake delay		When the braking conditions are met, the dynamic brake action delay time
	Prohibit dynamic	
P01-21	brakes when the main	Setting range: 0-1
	nower supply is	0: Using dynamic braking
	turned off	1: Turn off dynamic braking
P01-22	Prohibit dynamic	Setting range: 0-1
	brake when servo is	0: Using dynamic braking
101 22	OFF	1. Turn off dynamic braking
	D 11 1 1	
	Prohibit dynamic	Setting range: 0-1
P01-23	brake during fault	0: Using dynamic braking
	alarm	1: Turn off dynamic braking
	Prohibit dynamic	Setting range: 0-1
P01-24	brake during	0: Using dynamic braking
	overtravel	1: Turn off dynamic braking
		Setting range: 0-255, unit: ms
	Holding brake	When enabled: After executing the enable command, the driver will only
	command - servo	receive the position command after a period of P01-30.
P01-30	OFF delay time	Off enable: When the motor is in a stationary state, after executing the off
	(holding brake	enable command, the time from when the brake is closed to when the
	opening delay)	motor becomes non energized
	Succed lineit 1 C	
	Speed limit value of	Setting range: 0-3000, unit: rpm
P01-31	holding brake	The motor speed threshold when the holding brake output is effective when
	command output	the motor is in a rotating state. When it is below this threshold, the bandgap

		output command is valid. Otherwise, it will wait for P01-32 time before the		
		bandgap output command is valid.		
	Servo OFF holding	Setting range: 0-255, unit: ms		
P01-32	brake command	The maximum waiting time for the brake output when the motor is in a		
	waiting time	rotating state.		
	Z signal width setting	Setting range: 0-10000, unit: 0.1ms		
D01.05		When set to 0, it is the default width		
P01-35		When there is a numerical value, the width of the Z signal is measured in		
		units of set time		
P01-40	Loss of control	Prevent the motor from losing control and abnormal rotation.		
		0: Turn off enable		
	detection enable	1: Enable		

8.2.3 P02-xx gain class parameters

para code	name	illustrate
P02-00	Position control gain 1	 Setting range: 0-3000.0, unit: 1/S The proportional gain of the position loop regulator, the larger the parameter value, the higher the gain ratio, the greater the stiffness, the smaller the position tracking error, and the faster the response. But excessive parameters can easily cause vibration and overshoot. This parameter is for steady-state response.
P02-01	Position control gain 2	 Setting range: 0-3000.0, unit: 1/S The proportional gain of the position loop regulator, the larger the parameter value, the higher the gain ratio, the greater the stiffness, the smaller the position tracking error, and the faster the response. But excessive parameters can easily cause vibration and overshoot. This parameter is for dynamic response.
P02-03	Speed feedforward gain	Setting range: 0-100.0, unit: 1.0% The feedforward gain of the speed loop, the larger the parameter value, the smaller the system position tracking error, and the faster the response. However, if the feedforward gain is too large, it will make the position

		loop of the system unstable and prone to overshoot and oscillation.
P02-04	Speed feedforward	Setting range: 0-64.00, unit: ms
		This parameter is used to set the feedforward filtering time constant of the
	smoothing constant	speed loop. The larger the value, the greater the filtering effect, but at the
		same time, the phase lag increases.
		Setting range: 1.0-2000.0, unit: Hz
		The larger the speed proportional gain, the greater the servo stiffness,
		and the faster the speed response. However, excessive gain can easily
P02-10	Speed proportional	cause vibration and noise.
	gain I	• Under the condition that the system does not produce oscillations, try to
		increase this parameter value as much as possible.
		• This parameter is for static response.
		Setting range: 1.0-1000.0, unit: ms
	Velocity Constant of integration 1	• The integration time constant of the speed regulator, the smaller the set
		value, the faster the integration speed, and the greater the stiffness. If it is
P02-11		too small, it is easy to generate vibration and noise.
		Try to reduce this parameter value as much as possible without system
		oscillation.
		This parameter is for steady-state response.
		Setting range: 0-100.0, unit: 1.0%
		• When set to 100.0%, the speed loop adopts PI control, resulting in fast
	Pseudo differential	dynamic response; When set to 0, the speed loop integration has a
P02-12	feedforward control	significant effect and can filter low-frequency interference, but the
	coefficient 1	dynamic response is slow.
		• By adjusting this coefficient, the speed loop can have good dynamic
		response and increase its resistance to low-frequency interference.
		Setting range: 1.0-2000.0, unit: Hz
		• The larger the speed proportional gain, the greater the servo stiffness,
P02-13	Speed proportional	and the faster the speed response. However, excessive gain can easily
	gain 2	cause vibration and noise.
		• Under the condition that the system does not produce oscillations, try to

		increase this parameter value as much as possible.		
		This parameter is for dynamic response.		
		Setting rat	nge: 1.0-1000.0,	unit: ms
		• The inte	egration time cor	nstant of the speed regulator, the smaller the set
		value, the	faster the integra	ation speed, and the greater the stiffness. If it is
P02-14	Velocity Constant of	too small,	it is easy to gene	erate vibration and noise.
	integration 2	Try to r	educe this param	neter value as much as possible without system
		oscillation	1.	
		This pa	rameter is for dy	namic response.
		Setting rat	nge: 0-100.0, uni	t: 1.0%
		• When set to 100.0%, the speed loop adopts PI control, resulting in fast		
	Pseudo differential	dynamic r	esponse; When s	set to 0, the speed loop integration has a
P02-15	feedforward control	significant effect and can filter low-frequency interference, but the		
	coefficient 2	dynamic r	esponse is slow.	
		By adju	sting this coeffic	cient, the speed loop can have good dynamic
		response a	and increase its r	esistance to low-frequency interference.
P02-16	Speed integration	Setting rat	nge: 0-32767	
	error limit amplitude	Speed inte	gration error lin	nit amplitude
	T	Setting rat	nge: 0-30000, un	it: 1.0%
P02-19	gain	Set the Current loop feedforward weighting value. This parameter adds the		
		differentia	l of speed comm	and to the Current loop after weighting.
	T	Setting rat	nge: 0-64.00, uni	t: ms
P02-20	amosthing constant	This parameter is used to set the torque feedforward filtering time		
	smoothing constant	constant.		
		Setting rat	nge: 0-10	
		Set the conditions for switching between the first and second gains		
		value	Switching	remark
P02-30	Gain switching mode		conditions	
		0	Fixed as	P02-00、P02-10、P02-11、P02-12
			First gain	
		1	Fixed as	P02-01、P02-13、P02-14、P02-15

			Second gain	
		2	Use	The DI port needs to be set to 9 (gain
			DI input	switching input)
			switching	Invalid: First gain
				Effective: Second gain
		3	High torque	Switch to the second gain when the torque
			command	command is greater than the threshold
				(determined by P02-31 and P02-32). When it
				is less than the threshold and exceeds the
				P02-33 delay setting, switch to the first gain.
		4	Large	Switch to the second gain when the speed
			variation in	command change is greater than the threshold
			speed	(determined by P02-31 and P02-32). When it
			command	is less than the threshold and exceeds the
				P02-33 delay setting, switch to the first gain.
		5	High speed	Switch to the second gain when the speed
		command	command is greater than the threshold	
				(determined by P02-31 and P02-32). When it
				is less than the threshold and exceeds the
				P02-33 delay setting, switch to the first gain.
	6	Large	Switch to the second gain when the position	
			positional	deviation is greater than the threshold
			deviation	(determined by P02-31 and P02-32). When it
				is less than the threshold and exceeds the
				P02-33 delay setting, switch to the first gain.
		7	With	Switch to the second gain when there is a
			position	position command. When the position
			command	command ends and the delay setting of
				P02-33 is exceeded, switch to the first gain.
		8	Positioning	Switch to the second gain when positioning
			incomplete	Imperfect. When the positioning is completed

				and the delay setting of P02-33 is exceeded,	
		9	Actual	Switch to the second gain when the actual	
			speed is	speed is greater than the threshold	
			high	(determined by P02-31 and P02-32). When it	
				is less than the threshold and exceeds the	
				P02-33 delay setting, switch to the first gain.	
		10	Position	Switch to the second gain when there is a	
			command+a	position command. When there is no position	
			ctual speed	command and the actual speed is less than the	
				threshold (determined by P02-31 and	
				P02-32), and the delay setting of P02-33 is	
				exceeded, switch to the first gain.	
		Setting ra	inge: 0-20000		
		The judgment threshold value during gain switching.			
P02-31	Gain switching level	Torque unit: 1000bit=25% rated torque			
		Speed un	it: 1000bit=200 r	evolutions per minute	
		Location unit: 131072bit per turn			
	Gain switching hysteresis	Setting ra	inge: 0-20000		
		Hysteresi	s level during gai	in switching	
P02-32		Torque u	nit: 1000bit=25%	rated torque	
		Speed unit: 1000bit=200 revolutions per minute			
		Location unit: 131072bit per turn			
		Setting ra	inge: 0-1000.0, u	nit: ms	
P02-33	Gain switching delay	When switching from the second gain to the first gain, the time from the			
		triggering condition to the actual switching.			
	~	Setting ra	unge: 0-1000.0, u	nit: ms	
P02-34	Position gain	Time for	smooth switching	g from position control gain 1 to position control	
	switching time	gain 2			
	Mode switch	Setting ra	inge: 0-4		
P02-40	selection	Set the conditions for speed loop PI control and P control			

		val	Judging	remark	
		ue	conditions		
		0	Torque command	When the torque command is less than	
				P02-41 and the threshold is set, it is PI	
				control; if it is greater than P02-41, it is P	
				control	
		1	Speed command	When the speed command is less than	
				P02-41 and the threshold is set, it is PI	
				control; if it is greater than P02-41, it is P	
				control	
		2	acceleration	When the acceleration is less than P02-41	
				and the threshold is set, it is PI control; if	
				it is greater than P02-41, it is P control	
		3	Position	When the position deviation is less than	
			deviation	P02-41 and the threshold is set, it is PI	
				control; if it is greater than P02-41, it is P	
				control	
		4	No mode switch	Speed environmentally friendly with PI	
				control, no longer switching	
		Setting	range: 0-20000		
	Mode switch level	Set the threshold value for switching.			
P02-41		Torque unit: 1000bit=25% rated torque			
		Speed unit: 1000bit=200 revolutions per minute			
		Locatio	on unit: 131072bit per	turn	
	Torque command	Setting	range: -100.0-100, u	nit: 1.0%	
P02-50	addition value	Valid in position control mode. This value is added to the given torque			
		value for vertical axis static torque compensation.			
P02-51	Forward torque	Setting	range: -100.0-100.0,	unit: 1.0%	
102-31	compensation	Valid i	n position control mod	le. Used to compensate positive Stiction	
P02-52	Reverse torque	Setting range: -100.0-100.0, unit: 1.0%			
	compensation	Valid in position control mode. Used to compensate reverse Stiction			

P02-59	Gain matching mode	0: Compatible with V4. X, V5. X, and older version gains
		1: New Current loop version gain

8.2.4 P03-xx position parameters

para code	name	illustrate
D02 00	Location Command	0: Pulse instruction
P03-00	Source	1: Given numbers, used for communication control.
		0: Orthogonal pulse instruction (90 $^{\circ}$ phase difference two-phase pulse)
P03-01	Command pulse	1: Direction+pulse command
	mode	2 or 3: Double pulse instruction (CW+CCW)
		Used to specify the pulse input port in the CN1 port
P03-02	Command pulse input	0: Low speed pulse port
	terminal	1: High speed pulse port
	x	Used to adjust the direction of pulse instruction counting
P03-03	Instruction pulse	0: Normal.
	inversion	1: Reverse direction
	Position pulse filtering settings	Setting range: 0-3, unit: us
		0: 0.1us
		1: 1.6us
P03-04		2: 3.2us
		3: 6.4us
		4~500: directly set the filtering time, unit: 0.1us. For example, set 10 and
		the filtering time is lus
		0: Output when the position deviation is less than the set value of P03-06
	Positioning	1: Output when the position setting is completed and the position deviation
P03-05	completion judgment	is less than the set value of P03-06
	conditions	2: Output when the position setting is completed (after filtering) and the
		position deviation is less than the set value of P03-06
	Positioning	Setting range: 0-65535, unit: encoder unit
P03-06	completion scope	Used to set the threshold value for positioning completion output. When

		using an absolute value motor, the encoder is calculated at 131072bit per revolution. If an incremental encoder motor is used, it is calculated based on the number of encoder wires * 4 per turn		
P03-07	Position feedback format	Setting range: 0-1 0: Incremental format.		
P03-09	Number of command pulses for one revolution of the motor	Setting range: 0-65535 Absolute encoder motor valid Used to set the number of command pulses for one revolution of the motor. When this parameter is set to 0, P03-10 and P03-11 parameters are valid		
P03-10	Molecules of electronic gear 1	When using absolute value motors, Refer to 6.1.3 Example of electronic gear ratio calculation method Formula for calculating the electronic gear ratio of incremental motors: $G = \frac{\text{member}}{D} = \frac{C \times 4}{D}$		
P03-11	Denominator of electronic gear 1	denomination P C: Encoder line rumber ; $P:$ Enter the number of pulses per revolution Example: The number of encoder lines is 2500, the number of input pulses per revolution is 3200, find the electronic gear ratio ? $G = \frac{C \times 4}{P} = \frac{2500 \times 4}{3200} = \frac{10000}{3200} = \frac{25}{8}$ Note: The numerator of 20B encoder is 131072 The numerator of the 17Z encoder is 160000		
P03-12	High molecular position of electronic gear 1	Setting range: 0-32767 This parameter can be used to amplify the electronic gear ratio: molecular value=P03-12 * 10000+P03-10		
P03-13	Electronic gear 2 molecule	Refer to P03-10		
P03-14	Electronic gear 2 denominator	Refer to P03-11		
P03-15	Excessive position	Setting range: 0-65535, unit: instruction unit * 10		

	deviation setting	Set the number of pulses with allowable deviation, exceeding the set value will cause an alarm. Example: Set a value of 20, when the following deviation exceeds 20 * 10, the driver will alarm AL.501 (position deviation is too large)
P03-16	Position instruction smoothing filter constant	Setting range: 1000, unit: ms Set the time constant of the position instruction smoothing filter
P03-20	Position feedback	Set the source of position feedback 0: Encoder 1: Grating ruler
P03-22	Incremental encoder output pulse division ratio numerator	When using an incremental encoder, set the number of output pulses for the CN1 port. P03-23 needs to be less than or equal to P03-22 Calculation formula:
P03-23	Incremental encoder output pulse division ratio denominator	$G = \frac{molecule}{denominator} = \frac{C \times 4}{P \times 4}$ C: Number of encoder lines P: The expected output is A, B, and the number of pulses per revolution Example: The number of encoder lines is 2500; The output is A and the number of B pulses per revolution is 500; $G = \frac{C \times 4}{P \times 4} = \frac{2500 \times 4}{500 \times 4} = \frac{5}{1}$
P03-25	Absolute value motor rotates one revolution to output pulse count	Setting range: 0-60000 Set the absolute value of the number of A and B frequency pulses each output when the motor rotates one revolution. Example: If the setting value is 2500, for each revolution of the motor, A and B signals will output 2500 pulses each
P03-30	Reverse phase of Linear encoder	Set whether the phase sequence of input A and B of the grating ruler is reversed 0: Do not invert

		1: Negate
P03-31	Polarity of Z pulse of Linear encoder	Set the effective level of the input Z signal of the grating ruler 0: Low level 1: High level
P03-40	Output pulse source	Set the source of the frequency division output signal in the CN1 terminal 0: Pulse output, alarm not output 1: Motor output 2: Pulse output 3: Grating ruler
P03-41	AB signal output inverted	0: Do not invert 1: Negate
P03-42	Output Z pulse polarity	Set the effective level of the frequency division output signal Z signal at the CN1 terminal 0: Low level 1: High level
P03-43	Pulse signal edge selection	0: Rising edge 1: Descending edge
P03-45	Digital instruction caching method	Setting range: 0-1 0: Do not cache (execute immediately) 1: Cache (execute new data after the last data execution)
P03-46	Maximum motor speed during digital position command operation	Setting range: 0-6000 Set the maximum motor speed during digital position command operation

8.2.5 P04-xx speed parameters

para code	name	illustrate
P04-00	Speed command source	0: External simulation instruction 1: Digital instruction (parameter setting) 2: Digital instructions (communication)

		3: Internal multiple sets of instructions			
	Speed command	Used to adjust the polarity relationship of analog quantities			
P04-01	analog quantity	0: Normal			
	inversion	1: Polarity reversal			
P04-02	Digital speed given	Setting range: -6000 to 6000, unit: rpm			
	value	When P04-00 is set to 1, P04-02 is the speed setting value			
	Zero speed position clamping function	0: No position clamping function			
		1: With position clamping function			
		When the speed control mode is in, the position lock mode is entered when			
		the following conditions are met simultaneously			
P04-03		A: P04-03 is set to 1			
		B: The absolute value of the speed command is less than the set threshold			
		of P04-04			
		C: The external input port function is set to 10 (fixed zero position) and is			
		in the input valid state			
	Zero speed position	Setting range: 0-6000, unit: rpm			
P04-04	clamping speed	Set the speed command threshold that triggers the zero speed position			
	threshold	clamping function			
	Overspeed alarm	Setting range: 0-6500, unit: rpm			
P04-05		Set the maximum allowable speed value, exceeding the set value will			
	value	cause AL.420Speed Alarm			
D04.06	Forward speed limit	Setting range: 0-6000, unit: rpm			
P04-06		Limit the forward speed value of the motor			
D04.07	Reverse speed limit	Setting range: -6000-0, unit: rpm			
P04-07		Limit the reverse speed value of the motor			
P04-10		Setting range: 0-200.0, unit: rpm			
	Zero speed detection	Set the zero speed detection threshold value, and the motor speed below			
	value	this threshold can be output through the output port"Motor zero speed			
		output"Signal			
D04 11	Rotation detection	Setting range: 0-200.0, unit: rpm			
P04-11	value	Set the motor rotation detection threshold, and if the motor speed exceeds			

		this value, the status can be displayed on the LED panel					
P04-12	Speed consistent amplitude	Setting range: 0-200.0, unit: rpm					
		Set the threshold value of the speed consistency signal. When the					
		difference between the motor speed and the command speed is within this					
		threshold range, it can be output through the output port"Speed consistent					
		output"Signal					
D 04.14		Setting ra	nge: 0-10	000, unit:	1ms/1000rpm		
P04-14	Acceleration time	Accelerat	ion when	setting sp	eed control		
D04.15	Deceleration time	Setting ra	nge: 0-10	000, unit:	1ms/1000rpm		
P04-15		Set the deceleration during speed control					
		Setting range: -6000 to 6000, unit: rpm					
		Paramete	rs P04-30	to P04-37	7 set the internal sp	eed from 1 to 8,	
	Internal speed setting 1-8	respective	ely				
		The implementation method for internal speed switching is as follows:					
		When the speed loop is controlled, P04-00 is set to 3,					
		The corresponding input port functions are defined as 13, 14, and 15					
		Example: Using input signal ports DI3, DI4, and DI5, and defining the I/O					
		port functions as functions 13, 14, and 15 respectively (Refer to parameter					
		description P06-01 for functional definitions), the speed switching					
P04-30		operation of the corresponding parameter settings is achieved through the					
 P04-37		combination of I/O levels.					
		DI3	DI4	DI5	Action		
					parameters		
		0	0	0	P04-30		
		1	0	0	P04-31		
		0	1	0	P04-32		
		1	1	0	P04-33		
		0	0	1	P04-34		
		1	0	1	P04-35		
		0	1	1	P04-36		
		1	1	1	P04-37		

para code	name	illustrate		
P05-00	Torque command source	 0: External simulation command (speed limit amplitude set by P05-02) 1: Digital command (speed limit amplitude set by P05-02) 2: External simulation command (speed limit amplitude determined by speed simulation command) 3: Digital command (speed limit amplitude determined by speed analog command) 		
P05-01	Reverse of torque command analog	Used to adjust torque direction 0: Normal		
	quantity	1: Reverse direction		
P05-02	Torque mode speed limit given value	Setting range: 0-maximum speed, unit: rpm Set the maximum speed value of the motor in torque mode to prevent mechanical damage caused by excessive motor speed during no-load operation Effective torque control mode		
P05-03	Digital torque given value	Setting range: -300-300, unit:% When P05-00 is set to 1, P05-03 sets the initial value for the digital torque		
P05-05	Torque limiting setting source	Source for adjusting torque limit amplitude 0: Internal digital quantity (set by P05-10, P05-11, or P05-12, P05-13) 1: External analog quantity (given by the external analog quantity input T-REF. In this mode, the amplitude limit in the positive and negative directions is consistent) 2: The torque limit is limited by parameter P05-03		
P05-06	Torque limit detection output delay	Setting range: 0-10000, unit: ms Set DO port output Torque limit detection output Signal delay time		
P05-10	Internal forward torque limit amplitude	Setting range: 0-300.0, unit: 1.0% Limit the forward output of the motor, with 100 representing one time the torque and 300 representing three times the torque		

8.2.6 P05-xx torque parameters

		When the torque output reaches the limit value, it can be output through					
		the DO port Torque limit detection output 信号					
	Internal reverse torque limit amplitude	Setting range: -300.0-0, unit: 1.0%					
		Limit the reverse output of the motor, with 100 representing one time the					
P05-11		torque and 3	00 representing three tim	es the torque			
		When the torque output reaches the limit value, it can be output through					
		the DO port Torque limit detection output signal.					
		Setting range: 0-300.0, unit: 1.0%					
	External forward torque limit amplitude	This function requires the use of an external input port in CN1 to switch					
		between the selected DI port Input Port Function Selection Set to 7					
		(external torque limit on forward rotation side). Control the logical state					
		of the port to switch control mode.					
			Terminal logic	Torque limit			
			-	amplitude			
P05-12			effective	External limiting			
				amplitude P05-12			
			invalid	Internal limiting			
				amplitude P05-10			
		If the DI function is not assigned, the default torque limit of the system					
		is P05-10					
		When the torque output reaches the limit value, it can be output through					
		the DO port Torque limit detection output 信号					
		Setting range: -300.0-0, unit: 1.0%					
		This function requires the use of an external input port in CN1 to switch					
		between the selected DI port Input Port Function Selection Set to 8					
	External reverse torque	(external torque limit on the reverse side). Control the logical state of the					
P05-13	limit amplitude	port to switch control mode.					
	*		Terminal logic	Torque limit			
			-	amplitude			
			effective	External limiting			
			amplitude P05-13				
--	---------------	-----------------------------	----------------------------	------------			
		invalid	Internal limiting				
			amplitude P05-11				
	If the DI fun	action is not assigned, the	default torque limit of th	ne system			
	is P05-11						
	When the to	rque output reaches the li	imit value, it can be outp	ut through			
	the DO port	Torque limit detection	output signal				

8.2.7 P06-xx I/O parameters

para code	name	illustrate
P06-00	DI1 input port effective level	Setting range: 0-4, factory setting: 0 Set valid inputs for the DI1 input port of CN1 0: represents low level effective (optocoupler conduction)
		 Represents high level active (optocoupler cutoff) Effective rising edge Effective falling edge Both rising and falling edges are effective
P06-01	DI1 input port function selection	Setting range: 0-24, factory setting: 1 servo ON Set the function of the D11 input port of CN1 0: Invalid pin 1: Servo ON 2: Alarm clear 3: Forward overtravel signal input 4: Reverse overtravel signal input 5: Control mode switching 6: Electronic gear input 7: External torque limit on forward rotation side 8: External torque limit on the reverse side 9: Gain switching input 10: Zero fixed input 11: Command pulse inhibit input 12: Encoder absolute value data requires input 13: Internal setting speed switching input 1 14: Internal setting speed switching input 2

		15: Internal setting speed switching input 3
		16: Position command reset input
		17: Magnetic pole detection input
		18: Command pulse input rate switching input
		19: Dragon Gate Simultaneous Action Enable
		20: Gantry alignment reset signal
		21: Origin switch signal
		22: Origin reset start signal
		23: Speed simulation command direction input
		24: Torque simulation command direction input
P06-02	DI2 input port effective level	Refer to P06-00
P06-03	DI2 input port function selection	Refer to P06-01, factory setting: 2 Alarm clear
P06-04	DI3 input port effective level	Refer to P06-00
P06-05	DI3 input port function selection	Refer to P06-01, factory setting: 3 forward overtravel signal input
P06-06	DI4 input port effective level	Refer to P06-00
P06-07	DI4 input port function selection	Refer to P06-01, factory setting: 4 reverse overtravel signal input
P06-08	DI5 input port effective level	Refer to P06-00
P06-09	DI5 input port function selection	Refer to P06-01, factory setting: 7 external torque limit on forward rotation side
P06-10	DI6 input port effective level	Refer to P06-00
	DI6 input port function	Refer to P06-01, factory setting: 8 external torque limit on reverse
P06-11	selection	rotation side
	DI7 input port effective	
P06-12		Refer to P06-00
	level	
P06-13	DI7 input port function	Refer to P06-01, factory setting: 5 Control mode switching

	selection	
P06-16	DI8 input port effective level	Refer to P06-00
P06-17	DI8 input port function selection	Refer to P06-01, factory setting: 16 position command reset input
P06-20	Effective level of DO1 output port	Setting range: 0-1, factory setting: 1 0: When the state is valid, the optocoupler is cut off 1: When the state is valid, the optocoupler is on
P06-21	DO1 output port function selection	Setting range: 0-13, factory setting: 3 servo ready for output0: Invalid pin1: Alarm output2: Holding brake open output3: Servo ready for output4: Positioning completion output5: Positioning proximity output6: Speed consistent output7: Motor zero speed output8: Torque limit detection output9: Speed limit detection output10: Warning output11: Command pulse input rate switching output12: Origin regression completion output13: Electrical origin regression completed output
P06-22	Effective level of DO2 output port	Refer to P06-20
P06-23	DO2 output port function selection	Refer to P06-21, factory setting: 2 band brake open output
P06-24	Effective level of DO3 output port	Refer to P06-20
P06-25	DO3 output port function selection	Refer to P06-21, factory setting: 1 alarm output
P06-26	Effective level of DO4 output port	Refer to P06-20

P06-27	DO4 output port function selection	Refer to P06-21, factory setting: 4 positioning complete output
P06-28	Effective level of DO5 output port	Refer to P06-20
P06-29	DO5 output port function selection	Refer to P06-21, factory setting: 8 torque limit detection output
P06-40	Speed analog command input gain	Setting range: 10-2000, unit: 1rpm/V Set the coefficient between the analog command and speed control command of CN1 input Example: 500 represents 500 revolutions per minute per V
P06-41	Speed simulation command filtering constant	Setting range: 0-64.00, unit: ms Set the filtering time coefficient of analog instructions for CN1 input
P06-42	Speed simulation instruction offset	Setting range: -10.000-10.000, unit V Set the zero offset of the analog command input for CN1
P06-43	Torque simulation command gain	Setting range: 0-100.0, unit 1% Set the coefficient between the analog command and speed control command of CN1 input For example, 30.0 represents 30% of the rated torque per V
P06-44	Torque simulation instruction filtering constant	Setting range: 0-64.00, unit: ms Set the filtering time coefficient of analog instructions for CN1 input
P06-45	Torque simulation instruction offset	Setting range: -10.000-10.000, unit V Set the zero offset of the analog command input for CN1
P06-46	Speed simulation instruction dead band	Setting range: 0-10.000, unit V Set the dead band voltage value of the speed simulation command. When the analog quantity is given within the range of positive and negative values, the system defaults to zero
P06-47	Torque simulation instruction dead band	Setting range: 0-10.000, unit V Set the dead band voltage value of the torque simulation command. When the analog quantity is given within the range of positive and

	negative values, the system defaults to zero

8.2.8 P08-xx Advanced Function Parameters

para code	name	illustrate
P08-01	Load rotation convention identification mode	Setting range: 0-1 0: Valid 1: Invalid
P08-02	Inertia identification maximum speed	Setting range: 100-2000, unit: rpm The maximum speed of the motor during offline inertia identification
P08-03	Inertia identification acceleration and deceleration time	Setting range: 20-800, unit: ms Acceleration and deceleration time of the motor during offline inertia identification
P08-04	Waiting time after single inertia identification completion	Setting range: 50-10000, unit: ms When offline inertia identification is completed, the waiting time after a single inertia identification is completed
P08-05	Number of motor rotations required to complete a single moment of inertia	This parameter is an automatically generated rotation circle value based on the conditions set in P08-02, P08-03, and P08-04
P08-11	Adaptive notch filter mode selection	Setting range: 0-4 0: The parameters of the third and fourth notch filters are no longer automatically updated and are saved as the current values. But manual input is allowed 1: 1 adaptive notch filter is effective, and the parameters of the third notch filter are automatically updated and cannot be manually inputted 2: Two adaptive notch filters are effective, and the parameters of the third and fourth notch filters are automatically updated and cannot be manually inputted 3: Only detect resonance frequency 4: Clear the parameters of the third and fourth notch filters and

		restore them to the factory settings
P08-13	Adaptive notch filter vibration detection threshold	Setting range: 0-7 This parameter sets the vibration detection sensitivity of the adaptive notch filter, and the smaller the parameter value, the more sensitive the detection sensitivity is
P08-17	Speed observer	0: Turn off speed observer 1: Open speed observer 2: Speed, torque observer
P08-19	Feedback speed low-pass filtering constant	Setting range: 0-25.00, unit: ms The feedback speed low-pass filtering time constant can be appropriately increased when there is a howling during motor operation.
P08-20	Torque command filtering constant 1	Setting range: 0-25.00, unit: ms The torque command filtering time constant is 1. When there is a howling during motor operation, this value can be appropriately increased.
P08-21	Torque command filtering constant 2	Setting range: 0-25.00, unit: ms The torque command filtering time constant is 2. When there is a howling during motor operation, this value can be appropriately increased.
P08-25	Disturbance torque compensation gain	Setting range: 0-100.0 Gain coefficient of disturbance torque observation value. The higher the value, the stronger the ability to resist disturbance torque, but the action noise may also increase.
P08-26	Disturbance torque filtering time constant	Setting range: 0-25.00, unit: ms The larger the value, the stronger the filtering effect, which can suppress action noise. However, excessive interference can lead to phase delay, which in turn affects the effectiveness of disturbance torque suppression.
P08-30	Notch Filter 1 Frequency	Setting range: 300-5000, unit: Hz Center frequency of notch filter 1

		When set to 5000, the notch filter is invalid
		Setting range: 0-20
P08-31	Notch Filter 1 Width	Notch width level of notch filter 1
		Is the ratio of width to center frequency
		Setting range: 0-99
		Notch depth level of notch filter 1
D00 22	N (I F'' I D (I	The ratio relationship between the input and output of the center
P08-32	Notch Filter I Depth	frequency of the notch filter
		The larger this parameter, the smaller the notch depth, and the weaker
		the effect
P08-33	Notch filter 2 frequency	Same as P08-30
P08-34	Notch filter 2 width	Same as P08-31
P08-35	Notch Filter 2 Depth	Same as P08-32
P08-36	Notch filter 3 frequency	Same as P08-30
P08-37	Notch filter 3 width	Same as P08-31
P08-38	Notch Filter 3 Depth	Same as P08-32
P08-39	Notch filter 4 frequency	Same as P08-30
P08-40	Notch filter 4 width	Same as P08-31
P08-41	Notch Filter 4 Depth	Same as P08-32

Display		illustration	
sequence	Show items		Unit
number			
d00.C.PU	Total position command pulses	This parameter can monitor the number of pulses sent by the user to the servo driver, thereby confirming whether there is a loss of pulse phenomenon	Instruction unit
d01.F.PU	Total position feedback pulse	This parameter can monitor the number of pulses fed back by the servo motor. Unit consistent with user input instruction unit	Instruction unit
d02.E.PU	Position deviation pulse count	This parameter can monitor the number of pulses with position lag during the operation of the servo system. Unit consistent with user input instruction unit	Instruction unit
d03.C.PE	Sum of position given pulses/ Gantry motor feedback pulse	This parameter can monitor the number of pulses sent by the user to the servo driver. Unit: When using an absolute value motor, calculate at 131072bit per revolution. If an incremental encoder motor is used, it is calculated based on the number of encoder wires * 4 per turn.	Encoder unit/ Instruction unit
d04.F.PE	Total position feedback pulse/	This parameter can monitor the number of pulses fed back by the servo motor. Unit: When using an absolute value motor, calculate at 131072bit per revolution. If an incremental encoder motor is used, it is calculated based on the number of encoder wires * 4 per turn.	Encoder unit/ Instruction unit
d05.E.PE	Position deviation pulse count/ Gantry pulse deviation	This parameter can monitor the number of pulses with position lag during the operation of the servo system. Unit: When using an absolute value motor, calculate at 131072bit per revolution. If an incremental encoder motor is used, it is calculated based on the number of encoder wires * 4 per turn.	Encoder unit/ Instruction unit
d06.C.Fr	Pulse command input frequency	This parameter can monitor the input frequency of external pulse commands	KHz

8.3 List of Monitoring Items

d07.C.SP	Speed control command	This parameter can monitor the servo given speed when the servo motor is running	rpm
d08.F.SP	Motor speed	This parameter can monitor the actual speed of the servo motor during operation	rpm
d09. C.tQ	Torque command	This parameter can monitor the servo given torque during the operation of the servo motor	%
d10.F.tQ	Torque feedback value	This parameter can monitor the feedback torque of the servo motor during operation	%
d11.AG.L	Average torque	This parameter can monitor the average torque of the servo motor over the past 10 seconds	%
d12.PE.L	Peak torque	This parameter can monitor the peak torque of the servo motor after being powered on	%
d13.oL	Overload load rate	This parameter can monitor the load occupancy rate of the servo motor in the past 10 seconds	%
d14.rG	Regeneration load rate	This parameter can monitor the load rate of the regeneration resistor	%
d16.I.Io	Input IO status	This parameter can monitor the input port status of CN1. The upper vertical bar represents high level (optocoupler cutoff), and the lower vertical bar represents low level optocoupler conduction). The corresponding relationship with the input port is that the operation panel corresponds to DI1-DI8 with 8 vertical bars from right to left	Binary
d17.o.Io	Output IO status	This parameter can monitor the output port status of CN1. The upper vertical bar represents the conduction of the optocoupler, and the lower vertical bar represents the cutoff of the optocoupler. The corresponding relationship with the output port is that the operation panel corresponds to DO1-DO5 with 5 vertical bars from right to left, respectively	Binary
d18.AnG	Electrical appliance angle	This parameter can monitor the Electrical appliance angle, which is 360 degrees after one revolution	0.1 degrees
d19.HAL	Motor UVW phase sequence	This parameter can monitor the phase sequence position of the incremental encoder motor	
d20.ASS	Absolute encoder single turn value	This parameter can monitor the feedback value of the absolute encoder, and the value varies between 0 and 65535 after one revolution	Decimal

d21.ASH	Absolute value encoder	This parameter can monitor the number of rotations	
	multi turn value	of the multi turn absolute encoder motor	
d22.J-L	Inertia ratio	This parameter can monitor the real-time inertia of the load carried by the motor	%
d23.dcp	Main circuit voltage	This parameter can monitor the voltage value of the	V
azonaep	(DC value)	main circuit	•
124 Ath		This parameter can monitor the driver temperature	Degrees
d24.Ath	Driver temperature		Celsius
125 (TE	Accumulated running	This parameter can monitor the drive running time	私
u25.012	time	in seconds	12
d26.1.Fr	Resonance frequency 1	This parameter can monitor resonance frequency 1	Hz
d28.2.Fr	Resonance frequency 2	This parameter can monitor resonance frequency 2	Hz
120 4 1	Analog command 1	This parameter can monitor the analog command	0.0117
d30.A11	input voltage (V_REF)	(V-REF) input voltage value of the speed loop.	0.01V
d31.Ai2	Analog command 2	This parameter can monitor the analog command	0.011
	input voltage (t_REF)	(T-REF) input voltage value of the torque loop.	0.01V

8.4 Auxiliary functions

serial num ber	Show items	Function	Operate
1	AF_JoG	JOG trial operation	 Press the button on the operation panel M button Switch to auxiliary mode AF_xxx, Operation Up/Down button to AF_JoG, press ENT button Enter Jog working mode. The default Jog speed is 30rpm. Press Up button At this point, the motor rotates forward at a speed of 30r/min; Press Down button At this time, the motor reverses at a speed of 30r/min. Long press ENT button Enter the speed editing menu. Adopt Up button, Down button and Left button To edit speed, press and hold after editing ENT button, re-enter Jog mode. The set speed will not be saved after exiting Jog mode. Press M button Exit Jog mode.
2	AF_run	Forced enable running speed	1. Press the button on the operation panel M button Switch to auxiliary mode AF_xxx , Operation $Up/Down$ button $\underline{\mathfrak{F}} AF_run$,

		mode	press ENT button Enter this working mode.	
			2. Press Up button Motor rotates forward, long press Up button The	
			motor speed will continue to increase; Press Down button When the	
			motor is in reverse, press and hold Up button The motor speed will	
			continue to increase.	
			3. Press M button Exit this mode.	
			1. Press the button on the operation panel M button Switch to	
		Analog input 1	auxiliary mode AF_xxx, Operation Up/Down button 至 AF_of1,	
		automatic zero	press ENT button, will display clr.Ai1.	
3	AF_oF1	drift	2. Press and hold the ENT button Until it appears Finsh Flashing,	
	_	calibration	completing automatic calibration of analog input 1 (speed analog)	
		(VCMD)	zero drift.	
			3. Press M button Exit this mode.	
			1. Press the button on the operation panel M button Switch to	
		Analog input 2	auxiliary mode AF_xxx, Operation Up/Down button Ξ AF_of2,	
		automatic zero	press ENT button, will display clr.Ai2。	
4	AF_oF2	drift	2. Press and hold the ENT button Until it appears Finsh Flashing,	
		calibration	completing automatic calibration of zero drift for analog input 1	
		(TCMD)	(torque analog).	
			3. Press M button Exit this mode	
		U. W current	Same as AF_ OF1	
_	45 52	Automatic	Attention: When performing this function, the servo needs to be in the	
5	AF_oF3	zero drift	off enable state, otherwise it will not appear Finsh Flashing page, but	
		calibration	also unable to complete automatic calibration	
			This auxiliary function must be operated in a non enabled state, and	
			the operating steps are as follows	
	AF_En0	Absolute value	1. Press the button on the operation panel M button Switch to	
6			auxiliary mode AF_xxx, Operation Up/Down button to AF_En0,	
		encoder fault	press ENT button, will display clr.Err。	
		clearing	2. Press and hold the ENT button Until it appears Finsh Flashing	
			completes the clearing of absolute encoder faults.	
			3. Press M button Exit this mode.	
		41 17 1	This auxiliary function must be operated in a non enabled state, and	
	AF_En1	Absolute value encoder multi turn value	the operating steps are as follows	
7			1. Press the button on the operation panel M button Switch to	
,			auxiliary mode AF_xxx , Operation Up/Down button $\Xi AF En1$,	
		reset	press ENT button, will display clr.ASH .	

			2. Press and hold the ENT button Until it appears Finsh Flashing,	
			completing the absolute value encoder multi turn value reset.	
			3. Press M button Exit this mode.	
			This auxiliary function must be operated in a non enabled state, and	
			the operating steps are as follows	
			1. Enter the Factory reset interface: press the M button Switch to	
8	AF_ini	Factory reset	auxiliary mode AF_xxx, Operation Up/Down button to AF_ini,	
			press ENT button, will display press Up to 5, Press and hold the	
			ENT button, a Progress bar appears until Finsh Flashes, completing	
			the Factory reset.	
			1. Press the button on the operation panel M button Switch to	
			auxiliary mode AF xxx, Operation Up/Down button to AF Err,	
			press ENT button Display the past 8 historical fault information. The	
			number at the left end is 0, which represents the last fault that	
			occurred	
		Fault record display	2. Press Up button It can display past faults one by one. Long press	
9	AF_Err		ENT button It can display the time of the fault occurrence, with the	
			time coordinate referring to d25.tiE.	
			3. Press M button Exit this mode.	
			Attention: The recording time of faults that occur during multiple	
			power ups and downs within 30 minutes may have a deviation of 30	
			minutes.	
			1. Press the button on the operation panel M button Switch to	
		¥7 ·	auxiliary mode AF_xxx, Operation Up/Down button to AF_uer,	
10	AF_uer	Version display	press ENT button The servo information is displayed.	
			2. Press Up button Can switch version signal page	
			3. Press M button Exit this mode.	
			1. Press the button on the operation panel M button Switch to	
			auxiliary mode AF_xxx, Operation Up/Down button to AF_unL,	
11			press ENT button You can edit the operation permissions. 0: All	
		Operation	parameters are locked and cannot be changed; 1: Lock P00-XX	
	AF_unL	permission	parameters, others can be changed; 2: Not locked, can be changed. Set	
		setting	the value of 0,1, which can be saved after power failure. When set to	
			2, power down will not be saved.	
			2. Press M button Exit this mode.	
10		Force output	1. Press the button on the operation panel M button Switch to	
12	AF_IO	port level	auxiliary mode AF xxx, Operation Up/Down button to AF Io. press	

			ENT button You can edit it now. The corresponding relationship with		
			the output port is that the operation panel corresponds to DO1-DO5		
			with 5 vertical bars from right to left		
			2. Press M button Exit this mode. The output port returns to its		
			original output state.		
			1. Press the button on the operation panel M button Switch to		
			auxiliary mode AF_xxx, Operation Up/Down button to AF_J-L,		
			press ENT button The inertia ratio measurement can be carried out.		
			2. Press and hold the UP button or Down button The motor will run		
		Measurement	back and forth within the maximum speed set by P08-02, the		
13	AF_J-L	of load inertia	acceleration and deceleration time set by P08-03, the waiting time set		
		ratio	by P08-04, and the number of turns set by P08-05 until the load		
			inertia ratio appears.		
			3. Press M button Exit this mode.		
			4. Record the measured value and write it into P01-04 (Moment of		
			inertia ratio) parameter		
			Before running this auxiliary function, move the machine to the		
14	AF-GTO		original position and follow the following steps		
			1. Press the button on the operation panel M button Switch to		
		GTO Set Origin	auxiliary mode AF_xxx, Operation Up/Down button to AF_GTO,		
			press ENT button The current multi turn value will be displayed.		
			2. Press and hold the ENT button Until it appears Finsh Flashing		
			completes the absolute value encoder origin setting.		
			3. Press M button Exit this mode.		

Chapter 9 Fault Analysis and Handling

Alarm type	Serial number	Alarm content	
	code		
	AL.051	EEPROM parameter abnormality	
	AL.060	Product model selection failure	
	AL.063	Overcurrent detection	
Hardware	AL.070	AD sampling failure (power on)	
failure	AL.071	Current sampling fault (operation)	
	AL.102	DI allocation failure	
	AL.105	Electronic gear setting error	
	AL.110	Power on again after parameter setting	
Connection failure	AL.305	Power line disconnection	
	AL.401	Undervoltage	
	AL.402	Overvoltage	
	AL.412	Motor overload (continuous maximum load)	
	AL.420	Overspeed	
	AL.421	Out of control detection	
	AL.423	Speed inconsistency alarm	
	AL.432	Regenerative short circuit open circuit	
	AL.440	heatsink OT	
Operational	AL.501	Excessive position deviation	
faults	AL.551	Return to origin timeout fault	
	AL.611	Incremental encoder Z signal loss	
	AL.620	Bus encoder disconnected	
	AL.621	Abnormal EEPROM parameters for reading and writing motor encoder	
	AL.640	Bus encoder overspeed	
	AL.641	Bus encoder overheating	
	AL.643	Bus encoder battery low voltage fault	
	AL.644	Bus encoder multi turn fault	

9.1 Fault alarm information table

	AL.645	Bus encoder multi turn overflow fault	
	AL.646 Bus encoder communication abnormality		
	AL.647	Bus encoder count abnormal 2	
	AL.648	Bus encoder communication abnormality 3	
	AL.649 Bus encoder communication abnormality 4		
	AL.650 Bus encoder communication abnormality 5		
	AL.651 Bus encoder communication abnormality 6		
AL.652 Bus encoder multi turn multiple faults		Bus encoder multi turn multiple faults	
warm	AL.941	Parameter changes that require reconnecting the power supply	

9.2 Causes and Handling of Fault Alarm

AL.051: EEPROM parameter abnormality

Reason for fault alarm	Fault alarm check	Disposal measures
Servo unit EEPROM data	Check wiring	Correct wiring and power on again
abnormality		If it persists, replace the drive

AL.060: Product model selection failure

Reason for fault alarm	Fault alarm check	Disposal measures
The product parameter settings do	Check product parameter settings	Set product parameters correctly
not match the actual hardware	and hardware models	If it persists, contact the
		manufacturer
Driver power does not match	The rated current of the selected	Using matching drivers and motors
motor power	motor is greater than or far less than	
	the output current of the driver	

AL.063: Overcurrent detection

Reason for fault alarm	Fault alarm check	Disposal measures
U. Short circuit between phases V	Check if there is a short circuit in	Correct wiring
and W	the U, V, and W wiring	
	Check for short circuit between	
	P+and C	
Drive damage	Disconnect the U, V, and W cables	If the connection is disconnected
	on the drive, and enable the drive	and the alarm still sounds when
		starting the drive, replace the drive

AL.070: Current sampling fault (power on)

Reason for fault alarm	Fault alarm check	Disposal measures
Abnormal sampling data of	Is the wiring correct	Correct wiring
current sensor components		If it persists, replace the drive

AL.071: Current sampling fault (operation)

Reason for fault alarm	Fault alarm check	Disposal measures
Abnormal sampling data of	Is the wiring correct	Correct wiring
current sensor components		If it persists, replace the drive

AL.102: DI allocation failure

Reason for fault alarm	Fault alarm check	Disposal measures
At least two input ports have the	Check if the input port function	Setting parameters correctly
same function selection	selection parameters are the same	Power on the driver again
	(P06-00~P06-17)	

AL.105: Electronic gear setting error

Reason for fault alarm	Fault alarm check	Disposal measures
Electronic gear ratio setting error	Check the electronic gear ratio setting parameters. P03-10, P03-11	Correctly setting the electronic gear ratio
The output pulse setting of the	Check the gantry function. The	Correctly set the number of
gantry is too small	feedback pulse number for one	feedback pulses for one rotation of
	revolution of the motor: P03-52	the gantry function motor
	must be greater than 128	

AL.110: Power on again after parameter setting

Reason for fault alarm	Fault alarm check	Disposal measures
After setting the servo parameters,	Power on the driver again	Power on the driver again
it needs to be powered on again to		
take effect		

AL.305: Power line disconnection

Reason for fault alarm	Fault alarm check	Disposal measures
------------------------	-------------------	-------------------

The power line is disconnected or	Check if there is an open circuit in	Replace the power line or motor
not connected	the motor power lines U, V, and W	

AL.401: Undervoltage

Reason for fault alarm	Fault alarm check	Disposal measures
The input voltage of the main	Check if the voltage at the terminals	Ensure correct wiring and use the
circuit is lower than the rated	L1 and L2 (L3) of the main circuit	correct voltage source or series
voltage value or there is no input	input is low. Bus voltage can be	voltage regulator
voltage	monitored through d23. dcp	
The power off time is too short	When turning off the power,	Ensure sufficient power outage
	confirm that the drive display screen	time
	is black (or turn off the power for	
	10s) before re powering on	

AL.402: Overvoltage

Reason for fault alarm	Fault alarm check	Disposal measures
The input voltage of the main	Use a Voltmeter to test whether the	Use the correct voltage source or
circuit is higher than the rated	input voltage of the main circuit is	series voltage regulator
voltage value	too high	
Excessive regenerative energy	Check if excessive regenerative	Connect the external resistor and set
	energy occurs during rapid motor	the parameters P00-30, P00-31, and
	start and stop	P00-32 correctly
Drive hardware failure	Overvoltage alarm is still triggered	Please send it back to the dealer or
	when the input voltage is	original factory for maintenance
	confirmed to be correct	

AL.412: Motor overload	(continuous	maximum	load)	
------------------------	-------------	---------	-------	--

Reason for fault alarm	Fault alarm check	Disposal measures
Continuous use exceeding the	Can be monitored through d13. oL	Replace with a higher power motor
rated load of the drive	in monitoring mode	or reduce the load
Improper setting of control	1. Is the mechanical system	1. Adjusting the gain of the control
system parameters	installed properly	circuit
	2. Acceleration setting constant too	2. Acceleration and deceleration
	fast	setting time slowing down
	3. Is the gain class parameter set	

	correctly	
Motor wiring error	Check the U, V, and W wiring	Correct wiring

AL.420: Over speed

Reason for fault alarm	Fault alarm check	Disposal measures
Input speed command too high	Use a signal detector to check	Adjusting the frequency of the
	whether the input signal is normal	input signal
Incorrect setting of over speed	Check if P04-05 (overspeed alarm	Set P04-05 correctly (overspeed
parameters	value) is set reasonably	alarm value)

AL.421: Out of Control Detection

Reason for fault alarm	Fault alarm check	Disposal measures
Wrong wiring of motor power	Check wiring	Correct wiring
lines U, V, and W		
Incorrect motor parameter setting	Check P00-05; And whether the	Setting parameters correctly
	encoder parameter settings are	When in torque mode, please set
	correct	P01-40 to 0 to turn off the runaway
		detection function

AL.423 Speed inconsistency alarm

Reason for fault alarm	Fault alarm check	Disposal measures
Wrong wiring of motor power	Check wiring	Correct wiring
lines U, V, and W		
Incorrect motor parameter setting	Check if P00-46/P04-12 setting is	Setting parameters correctly
	reasonable	

AL.432: Regeneration short circuit, open circuit

Reason for fault alarm	Fault alarm check	Disposal measures
Regenerative short circuit	Check if there is a short circuit in	If there is no short circuit in P and
	the P and C ports	C, and the alarm still appears,
		please return the drive to the
		factory for maintenance
Regenerative open circuit	Please confirm the parameter	Set parameter values correctly
	settings for P00-30, P00-31, and	
	P00-32	

AL.440: Radiator overheating

Reason for fault alarm	Fault alarm check	Disposal measures
The internal temperature of the	Check if the cooling conditions of	Improve the cooling conditions of
driver is higher than 95 °C	the drive are good	the drive. If an alarm still occurs,
		please return the drive to the
		factory for maintenance
Parameter setting error	Check if parameter P00-40 is set	Set parameter values correctly
	correctly	

AL.501: Excessive position deviation

Reason for fault alarm	Fault alarm check	Disposal measures
The position deviation is too	Confirm parameter settings for	Increase the setting value of P03-15
large, and the parameter setting is	P03-15 (position deviation too large	(position deviation too large
too small	setting)	setting)
The gain value is set too low	Confirm whether the gain class	Readjust the gain class parameters
	parameters are set reasonably	correctly
The internal torque limit	Confirm internal torque limit	Correctly adjust the internal torque
amplitude setting is too small	amplitude	limit amplitude again
Excessive external load	Check external loads	Reduce load or replace high-power
		motor

AL.551: Home return timeout fault

Reason for fault alarm	Fault alarm check	Disposal measures
Timed out executing the return to	Confirm whether parameter P03-68	Set P03-68 correctly
home operation	(maximum time limit for searching	
	the origin) is reasonable	

AL.611:20Z motor Z signal abnormality

Reason for fault alarm	Fault alarm check	Disposal measures
20Z motor Z signal abnormality	Check encoder wiring	Correct wiring
		Motor return for maintenance

AL.620: Bus encoder disconnected

Reason for fault alarm	Fault alarm check	Disposal measures
Bus encoder communication	Check encoder wiring	Correct wiring
failure		

AL.621: Abnormal EEPROM parameters for reading and writing motor encoder

Reason for fault alarm	Fault alarm check	Disposal measures
Encoder read/write error	Check the encoder wiring,	Correct wiring

AL.640: Bus encoder overspeed

Reason for fault alarm	Fault alarm check	Disposal measures
The speed value of the bus	Check encoder wiring	Reduce speed
encoder exceeds 6000rpm	Confirm that the encoder shield	If the connection is normal, please
	wire is correctly connected	return the drive to the factory for
		maintenance

AL.641: Bus encoder overheating

Reason for fault alarm	Fault alarm check	Disposal measures
Encoder overheating	Check if the temperature at the	Reduce load
	installation position of the motor	Replace the motor
	encoder is too high. Is it caused by	
	high motor load	

AL.643: Bus encoder battery failure

Reason for fault alarm	Fault alarm check	Disposal measures
When the bus encoder is set to	Check the external battery voltage	When the battery voltage is below
multi turn absolute value, the	of the encoder and confirm that it is	3.0V, replace the battery,
external battery voltage is low	higher than 3.0V	Above 3V using auxiliary function
		AF_ En0 Clear Alarm
Encoder cable disconnected or	Confirm if the encoder cable has	Using auxiliary function AF_ En0
connected	been disconnected from the motor	Clear Alarm

AL.644: Bus encoder multi turn fault

Reason for fault alarm	Fault alarm check	Disposal measures
Bus encoder multi turn fault	Does the device operate in the same	Using auxiliary function AF_ EN0,
	direction for a long time, with the	AF_EN1 clears the alarm.
	number of cycles exceeding the	
	range of cycles counted	

AL.645: Bus encoder multi turn overflow fault

Reason for fault alarm	Fault alarm check	Disposal measures
The number of rotations of the bus	The number of turns can be	Using instruction AF_ En1 clear
encoder exceeds the range	monitored through monitoring mode	multi turn values
	d21. ASH, and multi turn absolute	
	motors cannot rotate in one	
	direction for a long time.	

AL.646~AL.651: Bus encoder communication abnormality

Reason for fault alarm	Fault alarm check	Disposal measures
Encoder communication error	Check if the encoder cable is too	Use appropriate length of wire to
	long or if there are large	reduce interference sources
	interference sources around it	

AL.941: Parameter changes require power outage and restart to take effect

Reason for fault alarm	Fault alarm check	Disposal measures
After modifying the parameters,	Power outage restart	Power outage restart
they need to be powered on again		
to take effect		

Chapter 10 Communication

10.1 Modbus communication parameter settings

Paramete r code	Name	Explanation
B00.22	Slave address	Setting range: 0-255, default 1
100-25	Slave address	Set according to equipment requirements

		Setting range: 0-7, default 2
		0:2400
		1: 4800
	NC 11	2: 9600
P00-24	Modbus	3: 19200
	communication Baud	4: 38400
		5: 57600
		6: 115200
		7: 25600
	Setting range: 0-3, default 0	
	Verification method	0: No verification, 2-bit stop bit
P00-25		1: Even parity, 1-bit stop bit
		2: Odd parity, 1-bit stop bit
		3: No verification, 1-bit stop bit
Madhua		Setting range: 0-100, default 0
		When the parameter is set to 0, it responds according to standard
P00-26	communication	communication. When the parameter is set to a value, the Modbus
	response delay	communication response time responds according to the set time

$10.\ 2$ Modbus communication supports reading and writing parameter settings

Support writing parameter list

address	Address	Address	Address	remark
Parameter	Decimal	Hexadecima	Octal	
number	system	1		
P03-09	309	135	465	Number of command pulses for one
				revolution of the motor
P03-10	310	136	466	Electronic gear molecule
P03-11	311	137	467	Electronic gear denominator
P05-03	280	118	430	Digital torque setting
P05-02	366	16E	556	Torque mode speed limit given value

Eeprom data	2050	802	4002	Data to be written
				Address: 0-11bit
				When the 12th bit is 1, it is a write
Eeprom control	2051	803	4003	operation
				When the 13th bit is 1, it is a read
				operation

Note: The above written parameters are only for temporary modification and will not be saved after power outage

Support reading parameter list

address	Address	Address	Address	Remarks	
Parameter	Decimal	Hexadecima	Octal		
number	system	1			
P03-09	309	135	465	Number of command pulses for	
				one revolution of the motor	
P03-10	310	136	466	Electronic gear molecule	
P03-11	311	137	467	Electronic gear denominator	
P03-12	312	138	470	High position of electronic gear	
				molecules	
EEPROM reading data	2050	802	4002	Read out data	
Eeprom Read Address	2051	803	4003	Address corresponding to data	
Position given value	2106/2107	83A/83B	4072/4073	Address 2106 is the upper 16 bits	
				Address 2107 is the low 16 bits	
Position feedback value	2108/2109	83C/83D	4074/4075	Address 2108 is the upper 16 bits	
				Address 2109 is the low 16 bits	
Position deviation value	2110/2111	83E/83F	4076/4077	Address 2110 is the upper 16 bits	
				Address 2111 is the low 16 bits	
Speed control command	2113	841	4101	Unit: 1rpm/min	
Motor running speed	2114	842	4102	Unit: 1rpm/min	

Torque command	2115	843	4103	Unit: 0.1%
Torque feedback value	2116	844	4104	Unit: 0.1%
Overload load rate	2117	845	4105	Unit: 0.1%
Peak torque	2118	846	4106	Unit: 0.1%
Regeneration overload	2120	848	4110	Unit: 0.1%
rate				
port status	2121	849	4111	After reading in the numerical
				value, it is converted to a 16 bit
				binary system: the low 8 bits are
				the input port status, and the middle
				5 bits are the output port status
Electrical appliance	2123	84B	4113	Unit: 0.1 degrees
angle				
Position feedback value	2125/2126	84D/84E	4115/4116	Front high and rear low: high is the
(Absolute data)				number of turns
				The low value is a single turn
				value, with 65536BIT per turn
				注: Please refer to parameter
				P00-29 for details
Main circuit voltage	2128	850	4120	Unit: V
Speed loop analog	2133	855	4125	Unit: 0.01V
voltage value				
Torque loop analog	2134	856	4126	Unit: 0.01V
voltage value				

External instruction digital quantity given list

Instruction Address	Address	Address	Address	remark
control	Decimal	Hexadecima	Octal	
model	system	1		

Speed loop digital	2002	7D2	3722	Speed (rpm)=10 decimal value/5
quantity setting				
Torque loop digital	280	118	430	Torque=10 decimal value%
quantity setting				
Torque loop speed	366	16E	556	Speed (rpm)=10 decimal value
digital quantity				

10.3 Overview of Modbus Communication Protocol

10.3.1 Introduction

The Nexus monitor can communicate with other devices using the RTU transmission mode of the AEG Modicon Modbus protocol. This communication is applicable to both RS-232 and RS-485 standards.

- RS-232 communication requires a single connection between a Nexus monitor and another device, only using channel 1 of the Nexus monitor.
- RS-485 supports multiple Nexus monitors connected to a single network, with a dual wire connection that can reach 115200 baud and ports 1-4 available.

10.3.2 Communication package

Communication occurs between a Modbus host and one or more Nexus slaves. The host initializes all communication by sending a "request packet" to the specified slave, and the slave responds with a "reply packet". The communication package consists of a string of 8-bit bytes, as follows:

· From address, one byte

Function code, one byte

- · Data, N bytes, high bytes first, low bytes last
- CRC (RTC Error Detection Code), 2 bytes
- Dead time, 3.5 byte transfer time.
- A single communication packet can send up to 127 registers.

10.3.3 From Address and Send Request

Each slave device on the communication bus has its own dedicated address, only responding to the address addressed by the host. The packet returned to the host has the same address in the slave address domain as the request packet. These addresses are programmable and range from 0 to 255.

Slave address 0 is a transfer command that allows the host to immediately send the same packet to all devices. All slaves follow the instructions of the package but do not respond. The transfer request is only useful for functions up to 6 and 10, representing the preset of a single register and the preset of multiple registers, respectively. Refer to Tables 1.3 and 1.4.

10.4 Function number

The function number of a package tells the addressing slave what actions to perform. Nexus supports the following Modus function numbers.

Table 1.1 Function Numbers

Function number		description
Hexadecimal	Decimal system	
03Н	3	Read Hold Register
06H	6	Preset a single register
10H	16	Preset multiple registers

10.4.1 Function number 03: Read hold register

This feature allows the host to read one or more parameter values (data registers) from a Nexus slave. This data register is a 16 bit value that is transmitted in the "Big Endian" format. Read high bytes first, read low bytes later.

BIG-ENDIAN means that the low byte is emitted at the low end of memory, while the high byte is emitted at the high end of memory

The host sends a packet to define a starting register and the number of registers to be read for the slave. The slave responds with a packet containing the requested parameter value, which is within the range specified in the original request.

In the following example, the host device requests a slave located at 01 to send values from two registers, starting with register 00001. The slave responds with values 3031H and 3037H from registers 00001 and 00002. Host sending format:

Number of data read from the starting address of the slave address function number data CRC

Slave sending format:

Slave Address Function Number Bytes Value of Each Data CRC

host package definition	Hexadecimal address	Slave Package Definition	Hexadecimal address
Slave address	01H	Slave address	01H
Function number	03H	Function number	03Н
Data start address high	00H	Bytes	04H
byte			
Data start address low byte	01H	Data 1 high byte	30Н
Register count high byte	00H	Data 1 Low Byte	31H
Register count low byte	02H	Data 2 High Bytes	30Н
CRC low byte	95H	Data 2 Low Bytes	37Н
CRC high byte	СВН	CRC low byte	F1H
		CRC high byte	2AH

Table 1.2 Function Number 03 Example Question

10.4.2 Function number 06: Adjusting a single register

This function allows the host to modify a single register on the Nexus slave. The data register is a 16 bit value, with high bytes transmitted first and low bytes transmitted later. In the following example, the host device stores the value 0001H of register 57346 (E002) in the Nexus slave with address 01H

Host sending format:

Slave address function number data starting address data value CRC

Slave sending format:

Slave address function number data starting address data value CRC

Host Package Definition	Hexadecimal address	Slave Package Definition	Hexadecimal address
Slave address	01H	Slave address	01H
Function number	06H	Function number	06Н
Data start address high byte	E0H	Data start address high byte	ЕОН
Data start address low byte	01H	Data start address low byte	01H
Data high byte	00H	Data high byte	00H
Low Byte of Data	01H	Low Byte of Data	01H
CRC low byte	2EH	CRC low byte	2EH
CRC high byte	0AH	CRC high byte	0AH

Table 1.3 Function Number 6 Example Question

10.4.3 Function number 10: Adjustment register

This function allows the host to modify a continuous set of registers on the Nexus slave. The data registers are 16 bit values, with high bytes being transmitted first and low bytes being transmitted later.

In the following example, the host device stores the value 0001H of registers 57345, 0001H of 57346, and 0001H of 57347 in the Nexus slave with address 01H.

Host sending format:

Slave address function number data start address modification data number first data... CRC

Slave sending format:

Slave address function number data start address modification data number CRC

10.4.4 Data Start Address

Hexadecimal range: 0000H-FFFFH

Decimal range: 0001-65535

For example, for some Scada software, to read the value in the storage register, the address format should be 4 (XXXXX), and XXXXX is the Decimal address.

Table 1.4 Example Question of Function Number 10

Host Package Definition	Hexadecimal	Slave Package Definition	Hexadecimal
-------------------------	-------------	--------------------------	-------------

	address		address
Slave address	01H	Slave address	01H
Function number	10H	Function number	10H
Data start address high byte	ЕОН	Data start address high byte	E0H
Data start address low byte	01H	Data start address low byte	01H
Set point quantity high byte	00H	Set point quantity high byte	00H
Set point quantity low byte	03H	Set point quantity low byte	03H
Bytes	06H	CRC low byte	E6H
Data 1 high byte	00H	CRC high byte	08H
Data 1 Low Byte	01H		
Data 2 High Bytes	00H		
Data 2 Low Bytes	01H		
Data 3 High Bytes	00H		
Data 3 Low Bytes	01H		
CRC low byte	4DH		
CRC high byte	46H		

10.5 Dead time

If the Nexus slave does not receive the data from the host within the 3.5 byte transmission time (about 7ms at 4800 Baud and about 300us at 115200 Baud), it is considered that the data reception is over. If the delay between two bytes of the master is greater than this time during transmission, the slave is considered as Dead time. Therefore, the conclusion drawn from the Dead time is that all the addressless slaves pay attention to the new packets from the host.

10.6 Exception procedure response

When executing host instructions, if the slave encounters an illegal instruction or other problem, an exception program response package contains an error code to indicate the type of error.

The following table shows the error codes and corresponding error types.

error code	Error type	interpretation
01	Illegal function	The slave does not support the function number in the request package
	number	
02	Illegal address	The slave does not recognize the address of the data area in the transmitted
		request packet
03	invalid data	The data mentioned in the transmission request packet is not supported by the
		registers in the Nexus slave
06	Busy, reject	The slave is busy performing long operations and cannot receive request
	package	packets

Table 1-5 Error Codes and Types

In the following example, the host device requests the value in the slave send register 00256 with address 01H, and the slave sends an error response message indicating that it is busy.

Table 1.6 Example of Exception Program Response

Host Package Meaning	Hexadecimal address	Meaning of slave package	Hexadecimal address
address	01H	address	01H
Function number	03H	Function number	03H
Data start address high byte	01H	error code	06H
Data start address low byte	00H	CRC low byte	C1H
Number of Registers High	00H	CRC high byte	32Н
Bytes			
Register count low byte	01H		
CRC low byte	85H		
CRC high byte	F6H		

Chapter11 Instructions for using special functions

11.1 Origin reset function

11.1.1 Function Description

Origin: refers to the mechanical origin, which can represent the position of the origin switch or motor Z signal, and is selected and set by function code P03-61.

Zero point: refers to the positioning of the target point, which can be represented as the origin+offset (set at P03-69/P03-70). When P03-69/P03-70 is set to 0, the zero point coincides with the origin.

The origin reset function refers to the position control mode, when the servo enable is ON, after triggering the origin reset function, the servo motor will actively search for the zero point and complete the positioning function.

P03-60	Origin regression enable	Setting range: 0-6, default 0	
	control	Set the origin regression mode and trigger signal source	
		0: Turn off the origin reset function 1: Enable the origin reset function	
		by inputting the origin reset start signal through DI 2: Enable the	
		electrical reset function by inputting the origin reset start signal	
		through DI 3: Immediately start the origin reset after power on 4:	
		Immediately perform the origin reset 5: Start the electrical reset	
		command 6: Use the current position as the origin	
P03-61	Origin regression mode	Setting range: 0-9, default 0	

11.1.2 Basic servo settings and instructions

		Set the control signal source for the zero return direction, deceleration	
		point, and origin during the origin regression operation	
		0: Forward return to zero, deceleration point and origin are origin	
		switches 1: Reverse return to zero, deceleration point and origin are	
		origin switches 2: Forward return to zero, deceleration point and	
		origin are motor Z signals 3: Reverse return to zero, deceleration	
		point and origin are motor Z signals 4: Forward return to zero,	
		deceleration point is origin switch, origin is motor Z signal 5: Reverse	
		return to zero, deceleration point is origin switch, origin is motor Z	
		signal 6: Forward return to zero, deceleration point Origin is forward	
		overtravel switch 7: reverse return to zero, deceleration point, origin	
		is reverse overtravel switch 8: forward return to zero, deceleration	
		point is forward overtravel switch, origin is motor Z signal 9: reverse	
		return to zero, deceleration point is reverse overtravel switch, origin is	
		motor Z signal	
P03-65	Speed when searching for	Setting range: 0-3000, default 100	
	the origin switch_high speed	When setting the origin to zero, search for the high-speed speed value	
		of the deceleration point signal. When returning to zero electrically,	
		the motor always runs at high speed P03-65.	

P03-66	Speed when searching for	Setting range: 0-1000, default 10
	the origin switch_low speed	Set the low speed value when searching for the origin when returning
		to zero.
		The speed setting should be low enough to prevent mechanical shock
		during shutdown.
P03-67	Search for acceleration and	Set the time for the motor to change from 0 to 1000rpm when
	deceleration time of the	resetting the origin. Unit: MS
	origin switch	
P03-68	Maximum time limit for	Limit the total time for returning to the origin, and if it exceeds the
	searching for origin	limit, a warning AL.551 (return to the origin timeout fault) will occur.
P03-69	Mechanical origin offset H	Set the high and low absolute position values of the motor after
P03-70	Mechanical origin offset L	resetting the origin. Calculation method for total offset:
		Offset=(P03-69) * 65535+(P03-70)
P06-01	DI1 input port function	DI1 set to 1, servo ON
	selection	
P06-05	DI3 input port function	DI3 set to 3, forward overtravel signal input
	selection	
P06-07	DI4 input port function	DI4 set to 4, reverse overtravel signal input
	selection	
P06-09	DI5 input port function	DI5 set to 21, origin switch signal
	selection	
P06-11	DI6 input port function	DI6 set to 22, zero point reset start signal
	selection	

11.1.3 Precautions for using origin reset

If the deceleration point signal is effective and the origin signal is not fully decelerated, it may lead to unstable final positioning. The displacement required for deceleration should be fully considered before setting the

deceleration point and origin signal input position. Acceleration and deceleration time when searching for the origin (P03-67) and speed when searching for the origin switch_ High speed (P03-65) can also affect positioning stability, and therefore should be taken into account when setting.

11.2 Use of absolute encoders

11.2.1 Function Description

Using a servo motor with an absolute value encoder, an absolute value detection system can be constructed through the upper device. By using the absolute value detection system, it is possible to eliminate the need for zero point reset operations every time the power is turned on. This function is based on MODBUS communication to read the number of turns and position data of the absolute encoder, and the upper device processes and controls to achieve the relevant functions of the absolute encoder.

11.2.2 Basic settings and instructions for MODBUS based communication servo

When a system using an absolute value encoder is put into use, it is necessary to initialize the rotation number data (AF-En1 absolute value encoder multi turn value reset). Therefore, in situations where initialization is required for the first time when the power is turned on, an alarm related to the absolute value encoder will occur. By setting (initializing) the absolute value encoder and initializing the rotation data, the alarms related to the absolute value encoder value encoder will be cleared.

Parameter code	Name	Illustration
P00-23	Slave address	Setting range: 0-255, default 1
		Set according to equipment requirements
P00-24		Setting range: 0-7, default 2
	Modbus communication Baud	0:2400
		1: 4800
		2: 9600
		3: 19200
		4: 38400
		5: 57600

		6: 115200 7: 25600
P00-25	Verification method	Setting range: 0-3, default 0 0: No verification, 2-bit stop bit 1: Even parity, 1-bit stop bit 2: Odd parity, 1-bit stop bit 3: No verification, 1-bit stop bit
P00-29	Modbus absolute encoder feedback format	Setting range: 0-1, default 0, Read the absolute position value 84D/84E through 485 0:84D is the circle value, 84E is the single circle value 1: 84D is the single lap value, 84E is the lap value

11.2.3 Absolute data address based on MODBUS communication

Address	Address:	Address:	Address:	Remarks
	Decimal	Hexadecimal	Octal	
Parameter number	system			
Position feedback value	2125/2126	84D/84E	4115/4116	Front high and rear low: high is the
(Absolute data)				number of turns
				The low value is a single turn
				value, with 65536BIT per turn

11.2.4 Absolute encoder related alarm processing

Alarm	Reason for fault alarm	Fault alarm check	Disposal measures
code			
AL.640	Bus encoder overspeed	Appears during initial use	Clear the alarm through AF-EN0
			(Refer to Chapter 8.4 for details)
AL.643	When the bus encoder is set	Check the external battery	Replace the battery and clear the
	to multi turn absolute value,	voltage of the encoder and	alarm through AF-EN0 (Refer to
	the external battery voltage	confirm that it is higher	Chapter 8.4 for details)
	is low	than 3.0V	

AL.644	Abnormal reading of multi	Check d21. ASH (Refer to	If the multi turn value is greater than
AL.645	loop data, or multi loop data	Chapter 8.3 for details) for	32767, clear the multi turn data
	greater than 32767	multi turn values	through AF-EN1 (Refer to Chapter 8.4
			for details)
AL.930	Absolute value encoder	Check the voltage of the	Replace the battery and clear the
	battery failure	encoder's external battery	alarm through AF-EN0 (Refer to
			Chapter 8.4 for details)

11.2.5 Absolute encoder battery replacement

If any of the following situations occur in the drive, to avoid absolute position data loss, please replace the battery.

When the driver displays AL.930, it indicates a low battery voltage warning. The battery must be replaced in a timely manner to avoid the loss of absolute motor position data. After replacing the battery, use the auxiliary function AF-EN0 to clear the alarm

When the driver displays AL.643, it indicates a low battery voltage alarm. When this alarm occurs, the motor coil count data cannot be recorded normally and the battery must be replaced immediately. After replacing the battery, use the auxiliary function AF-EN0 to clear the alarm and verify the origin of the device. Simultaneously using auxiliary functions to reset the multi turn data of the motor

Note: It is recommended to replace the battery with the driver powered on to avoid the loss of absolute position data

11.3 Multi turn absolute value origin regression function

11.3.1 Function Description

The multi turn absolute value origin regression function refers to the use of multi turn absolute value drivers and motors in position control mode. By setting the origin position through the driver, after the motor moves, an I/O signal can be given to return the motor to the set origin position
Paramete	Name	illustration
r code		
P03-06	Origin reach range	Setting range: 0-65535, unit: 1/10000 turn
		Used to set the threshold value for completing the output at the origin.
P03-65	Speed when searching for	Setting range: 0-3000, default 100
	the origin switch_high	When setting the origin to zero, search for the high-speed speed value
	speed	of the deceleration point signal. When returning to zero electrically,
		the motor always runs at high speed P03-65.
P03-66	Speed when searching for	Setting range: 0-1000, default 10
	the origin switch_low	Set the low speed value when searching for the origin when returning
	speed	to zero.
		The speed setting should be low enough to prevent mechanical shock
		during shutdown.
P03-67	Search for acceleration and	Set the time for the motor to change from 0 to 1000rpm when
	deceleration time of the	resetting the origin. Unit: MS
	origin switch	
P03-68	Maximum time limit for	Limit the total time for returning to the origin, and if it exceeds the
	searching for origin	limit, a warning AL.551 (return to the origin timeout fault) will occur.
P03-58	Origin circle numerical	Used to display the origin setting position
	display	
P03-59	Display of single circle	
	value at the origin	
P06-01	DI1 input port function	DI1 set to 1, servo ON
	selection	
P06-05	DI3 input port function	DI3 set to 22, origin start signal (can choose any input port to set to
	selection	22)

11.3.2 Basic servo settings and instructions

P06-27	DO4 output port function	DO4 is set to 12, and the origin reaches the signal output (any output
	selection	port can be selected to be set to 12)

11.3.3 Origin setting

The origin setting needs to be set through the auxiliary function AF-GTO, and the setting steps are as follows: Before running this auxiliary function, please move the machine to the desired home position and follow the steps below

1. Press the button on the operation panel M button Switch to auxiliary mode AF_xxx, Operation Up/Down button to AF_GTO, press ENT button The current multi turn position will be displayed.

2. Long press ENT button Until it appears Finsh Flashing completes the absolute value encoder origin setting.

Jiemeikang Office Address

Guangzhou Office:

Address: No. 50 Qiaodong Ring Road, Panyu City, Guangzhou

Tel: 18902462529

Dongguan Office:

Address: Room 501, Building 2, Shanhu Town, Dalingshan, Dongguan City

Electric activity: 18923725231

Kunshan Office:

Address: Room 1506, Building 34, Sijihuacheng, Yushan Town, Kunshan, Jiangsu Province

Tel: 18938972298

Jinan Office:

Address: Vanke New Mileage 11-4-201, Licheng District, Jinan City, Shandong Province

Tel: 18925247902 18953109941

Henan Office:

Address: 2107, Block B, No.1 Park Road, High tech Zone, Zhengzhou City

Tel: 15333832091 18938972268

Qingdao Office:

Address: Room 504, Unit 2, Building 20, Puji New District, Puji Road, Shibei District, Qingdao

Tel: 13916039130

Hefei Office:

Tel: 18056073401

Changsha Office:

Address: Room 503, Xiya Apartment, No. 123, Tongzipo Road, Yuelu District, Changsha

Tel: 13787061598 0731-84834186

Fujian Xiamen Office:

Tel: 18925285260

Taizhou Office:

Address: Room 513, Building 59, Jinyi Garden, East Second Ring Road, Huangyan District, Taizhou, Zhejiang Tel: 17727553127