

iHSS60-XX Integrate Stepper Servo Motor

Manual

Shenzhen Just Motion Control Electro-mechanics Co., Ltd

 $\mathtt{TEL:} + 86\text{-}0755\text{-}26509689$

FAX:+86-0755-26509289

www.jmc-motion.com

Email:info@jmc-motion.com

Address: Floor2, Building A, Hongwei Industrial Zone No.6, Liuxian 3rd

Road, Shenzhen. China

Thanks for selecting JMC stepper motor driver. We hope that the superior performance, outstanding quality, excellent cost performance of our product can help you accomplish your motion control project.

The content in this manual has been carefully prepared and is believed to be accurate, but no responsibility is assumed for inaccuracies.

All the contents of this manual, copyright is owned JUST MOTION CONTROL Shenzhen by the electromechanical Co., Ltd. Without JMC permission, no unit or individual is allowed to copy.

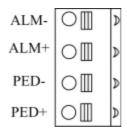
Shenzhen Just Motion Control Electro-mechanics Co., Ltd

Version	Editor	Verifier
V1.1	R&D	R&D

Contents

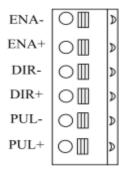
1. Overview	4 -
2. Features	4 -
3. Ports Introduction	5 -
3.1 ALM signal output ports	5 -
3.2 Control Signal Input Ports	5 -
3.3 Power Interface Ports	15 -
4. Technological Index	7 -
5. Connections to Control Signal	8 -
5.1 Connections to Common Anode	8 -
5.2 Connections to Common Cathode	9 -
5.3 Connections to Differential Signal	9 -
5.4 Connections to 232 Serial Communication Interface	10 -
5.5 Sequence Chart of Control Signals	11 -
6. DIP Switch Setting	12 -
6.1 Micro steps Setting	12 -
6.2 Activate Edge Setting	13 -
6.3 Running Direction Setting	12 -
7. Faults alarm and LED flicker frequency	14 -
8. Appearance and Installation Dimensions	
10. Parameter Setting	16 -
11. Processing Methods to Common Problems and Faults	20 -
11.1 Power on power light off	20 -
11.2 Power on red alarm light on	21 -
11.3 Red alarm light on after the motor running a small ar	ıgle 21 -
11.4 After input pulse signal but the motor not running	21 -

1. Overview

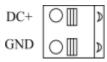

The iHSS60-XX Integrate Stepper Servo Motor is merged the stepper servo driver and motor together. This motor system integrates the servo control technology into the digital stepper drive perfectly. And this product adopts an optical encoder with high speed position sampling feedback of 50 μ s, once the position deviation appears, it will be fixed immediately. This product is compatible the advantages of the stepper drive and the servo drive, such as lower heat, less vibration, fast acceleration, and so on.

2. Features

- ◆ Integrated compact size for saving mounting space
- ♦ Without losing step, High accuracy in positioning
- ♦ 100% rated output torque
- ◆ Variable current control technology, High current efficiency
- ◆ Small vibration, Smooth and reliable moving at low speed
- ◆ Accelerate and decelerate control inside, Great improvement in smoothness of starting or stopping the motor
- ◆ User-defined micro steps
- No adjustment in general applications
- ◆ Over current, over voltage and over position error protection
- Green light means running while red light means protection or offline


3. Ports Introduction

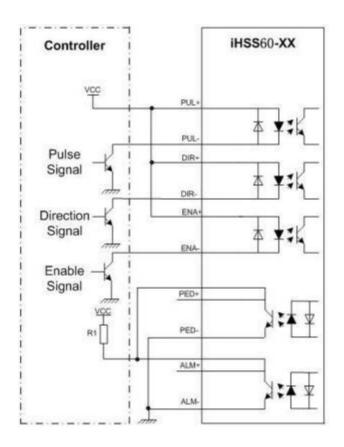
3.1 ALM signal output ports


Symbol	Name	Remark
ALM+	Alarm output +	
ALM-	Alarm output -	* ****
PED-	Arrive position output-	
PED+	Arrive position output+	

3.2 Control Signal Input Ports

Symbol	Name	Remark
ENA-	Enable signal -	
ENA+	Enable signal +	
DIR-	Direction signal-	Compatible with
DIR+	Direction signal+	5V or 24V
PUL-	Pulse signal -	
PUL+	Pulse signal +	

3.3 Power Interface Ports

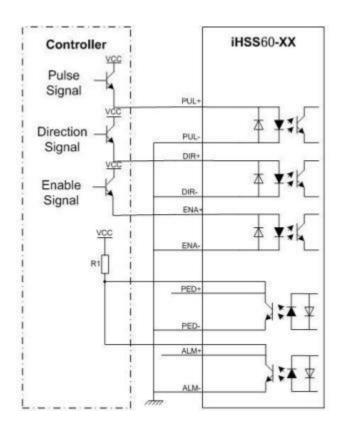

Symbol	Name	
VCC	Input power	
GND	Input power ground	

4. Technological Index

Input Voltage		24~50VDC(36V Typical)		
Output Current		4.5A 20KHz PWM		
Pulse Frequ	iency max	200K		
Communic	ation rate	57.6Kbps		
Protec	ction	Over current peak value 8A±10% Over voltage value 80V The over position error range can be set through the HISU		
	Environment	Avoid dust, oil fog and corrosive gases		
Environment	Operating Temperature	70°C MAX		
Specifications	Storage Temperature	-20℃~+65℃		
Humidity		40~90% RH		
	Cooling	Natural cooling or forced air cooling		
method				

5. Connections to Control Signal

5.1 Connections to Common Anode

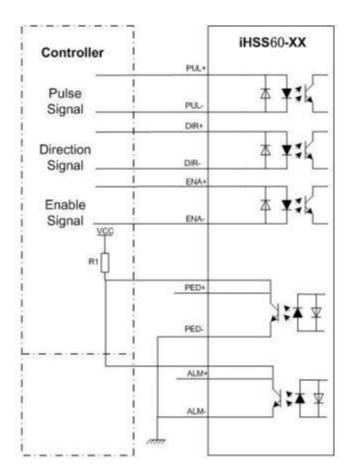


Remark:

VCC is compatible with 5V or 24V;

 $R(3\sim5K)$ must be connected to control signal terminal.

5.2 Connections to Common Cathode

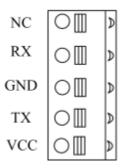


Remark:

VCC is compatible with 5V or 24V;

R(3~5K) must be connected to control signal terminal.

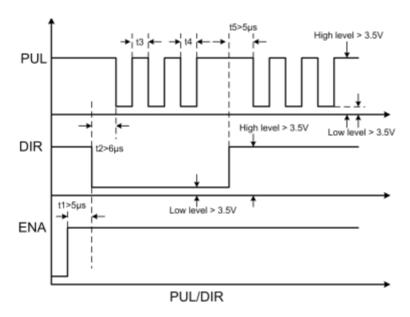
5.3 Connections to Differential Signal



Remark:

VCC is compatible with 5V or 24V;

 $R(3\sim5K)$ must be connected to control signal terminal.


5.4 Connections to 232 Serial Communication Interface

Definition	Remark
NC	Reserved
RX	Receive Data
GND	Power Ground
TX	Transmit Data
+5V	Power Supply to HISU

5.5 Sequence Chart of Control Signals

In order to avoid some fault operations and deviations, PUL, DIR and ENA should abide by some rules, shown as following diagram:

Remark:

- a. t1: ENA must be ahead of DIR by at least 5 μ s. Usually, ENA+ and ENA- are NC (not connected).
- b. t2: DIR must be ahead of PUL active edge by 6 μ s to ensure correct direction;
- c. t3: Pulse width not less than 2.5 µs;
- d. t4: Low level width not less than 2.5 µ s.

6. DIP Switch Setting

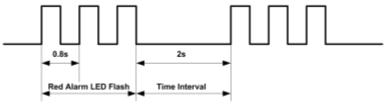
6.1 Micro steps Setting

The micro steps setting is in the following table, while $SW1 \times SW2 \times SW3 \times SW4$ are all on, the internal default micro steps inside is

activate, this ratio can be setting through the HISU.

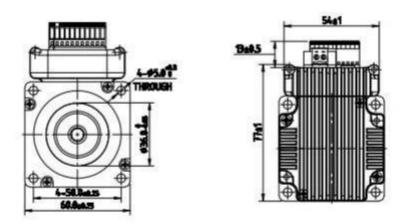
Dial switch Micro steps	SW1	SW2	SW3	SW4
Default	on	on	on	on
800	off	on	on	on
1600	on	off	on	on
3200	off	off	on	on
6400	on	on	off	on
12800	off	on	off	on
25600	on	off	off	on
51200	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
40000	off	off	off	off

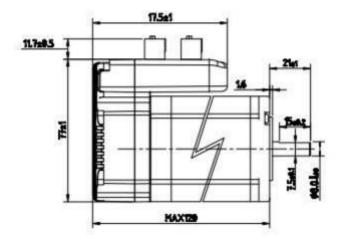
6.2 Running Direction Setting


SW5 is used for setting the activate edge of the input signal, "off"

means the activate edge is the rising edge, while "on" is the falling edge.

6.3 Activate Edge Setting


SW6 is used for setting the running direction, "off" means CCW, while "on" means CW.


7. Faults alarm and LED flicker frequency

Flicker	Description to the Faults
Frequency	
1	Error occurs when the motor coil current exceeds
	the drive's current limit.
2	Voltage reference error in the drive
3	Parameters upload error in the drive
4	Error occurs when the input voltage exceeds the
	drive's voltage limit.
5	Error occurs when the actual position following
	error exceeds the limit which is set by the position
	error limit.

8. Appearance and Installation Dimensions

Model	Length (mm)
iHSS60-36-30-XXX	118

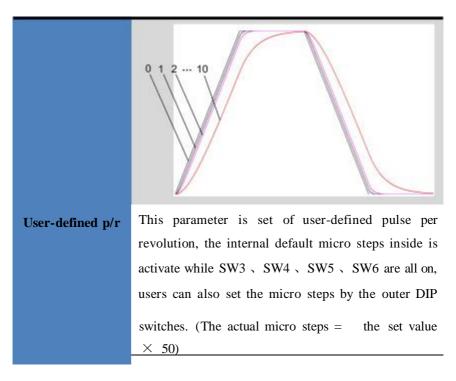
10. Parameter Setting

The parameter setting method of 2HSS60-KH drive is to use a HISU adjuster through the 232 serial communication ports, only in this way can we setting the parameters we want. There are a set of best default parameters to the corresponding motor which are carefully adjusted by our engineers, users only need refer to the following table, specific condition and set the correct parameters.

Actual value = Set value \times the corresponding dimension

	Tietuai vaide Bet vaide A die corresponding dimension					
Mode	Definition	Range	Dime-	Drive	Default	
			nsion	Restart	Value	
P1	Current loop Kp	0-4000	1	N	1000	
P2	Current loop Ki	0-1000	1	N	100	
P3	Damping coefficient	0—1000	1	N	100	
P4	Position loop Kp	0-4000	1	N	1300	
P5	Position loop Ki	0—1000	1	N	250	
P6	Speed loop Kp	0-3000	1	N	50	
P7	Position loop Ki	0—1000	1	N	10	
P8	Open loop current	0-40	1	N	3	
P9	Close loop current	0—30	1	N	2	
P10	Alarm level	0—1	1	N	0	
P11	Reserved					
P12	Stop lock enable	0—1	1	N	0	

P13	Enable signal level	0—1	1	N	0
P14	Arrival level	0—1	1	N	1
P15	Reserved				
P16	Position error limit	0-3000	10	N	1000
P17	Reserved				
P18	Reserved				
P19	Speed smoothness	0—10	1	N	0
P20	User-defined p/r	4-1000	50	Y	8


There are total 20 parameter configurations, use the HISU to download the configured parameters to the drive, the detail descriptions to every parameter configuration are as follows:

Item	Description
Current loop Kp	Increase Kp to make current rise fast. Proportional
	Gain determines the response of the drive to setting
	command. Low Proportional Gain provides a stable
	system (doesn't oscillate), has low stiffness, and the
	current error, causing poor performances in tracking
	current setting command in each step. Too large
	proportional gain values will cause oscillations and
	unstable system.
Current loop Ki	Adjust Ki to reduce the steady error. Integral Gain
•	helps the drive to overcome static current errors. A
	low or zero value for Integral Gain may have current

errors at rest. Increasing the integral gain can reduce the error. If the Integral Gain is too large, the system may "hunt" (oscillate) around the desired position. This parameter is used to change the damping **Damping** coefficient in case of the desired operating state is coefficient under resonance frequency. The PI parameters of the position loop. The default Position loop Kp values are suitable for most of the application, you Position loop Ki don't need to change them. Contact us if you have any question. The PI parameters of the speed loop. The default Speed loop Kp values are suitable for most of the application, you Speed loop Ki don't need to change them. Contact us if you have any question. This parameter affects the static torque of the motor. Open loop current This parameter affects the dynamic torque of the Close loop motor. (The actual current = open loop current + current close loop current) This parameter is set to control the Alarm **Alarm Control** optocoupler output transistor. 0 means the transistor is cut off when the system is in normal working, but

when it comes to fault of the drive, the transistor becomes conductive. 1 means opposite to 0. This parameter is set to enable the stop clock of the Stop lock enable drive. 1 means enable this function while 0 means disable it. This parameter is set to control the Enable input **Enable Control** signal level, 0 means low, while 1 means high. This parameter is set to control the Arrival **Arrival Control** optocoupler output transistor. 0 means the transistor is cut off when the drive satisfies the arrival command, but when it comes to not, the transistor becomes conductive. 1 means opposite to 0. The limit of the position following error. When the **Position error** actual position error exceeds this value, the drive limit will go into error mode and the fault output will be activated. (The actual value = the set value \times 10) This parameter is set to control the smoothness of **Speed** the speed of the motor while acceleration or smoothness deceleration, the larger the value, the smoother the

speed in acceleration or deceleration.

11. Processing Methods to Common Problems and

Faults

11.1 Power on power light off

No power input, please check the power supply circuit. The voltage is too low.

11.2 Power on red alarm light on

- Please check the motor feedback signal and if the motor is connected with the drive.
- The stepper servo drive is over voltage or under voltage. Please lower or increase the input voltage.

11.3 Red alarm light on after the motor running a small angle

- Please check the motor phase wires if they are connected correctly, if not, please refer to the 3.4 Power Ports.
- Please check the parameter in the drive if the poles of the motor and the encoder lines are corresponding with the real parameters, if not, set them correctly.
- Please check if the frequency of the pulse signal is too fast, thus the motor may be out of it rated speed, and lead to position error.

11.4 After input pulse signal but the motor not running

- Please check the input pulse signal wires are connected in reliable way.
- Please make sure the input pulse mode is corresponding with the real input mode.