

JAND_P28/DB44 AC Servo Driver User Manual JAND-15002-P28 JAND-7502-P28 JAND-4002-P28

JAND-2002-P28 JAND2002-20B-DB44 JAND15002-20B-DB44 JAND10002-20B-DB44 JAND7502-20B-DB44 JAND7502-20B-DB44

Address: Building B, Jiayu Technology Innovation Industrial Park, Jin 'an Road, Matian Street, Guangming District, Shenzhen Tel: 0755-26509689 400 189 0098 fax: 0755-26509289 E-mail:info@jmc-motion.com Http: //www.jmc-motor.com

Preface

All contents and copyright property rights of this manual belong to Shenzhen Just Motion Control Electromechanical Co., Ltd., and no unit or individual may copy, copy or write without permission of Shenzhen Just Motion Control Electromechanical Co., Ltd. No warranties, representations or other implications of any kind are made in this manual. We shall not be liable for any loss of benefits caused by direct or indirect data outflow caused by the information of the products mentioned in this manual. In addition, the products and information mentioned in this manual are for reference only and are subject to update without prior notice.

2

All rights reserved.

Version	compile	Approved	
V1. 2	RD	RD	

Preface	2
Chapter I Safety Precautions	9
1.1 Receiving and installation precautions	9
1.2 Wiring Precautions	9
1.3 Precautions for operation and operation	10
1.4 Precautions for maintenance and inspection	10
Chapter IIProduct Introduction	12
2.1 servo driver	12
2.1.1 General	12
2.1.2 Main Features	12
2.1.3 Drive Specifications	13
2.1.4 Servo driver nameplate and model description	16
2.2 servo motor	17
2.2.1 General	17
2.2.2 Main Features	17
2.2.3 Servo motor nameplate and model description	17
2. the servo control system is connecte with that main power s	upply
loop	19
2.3.1 Wiring diagramof P	19
2.3. 2 DB44 SERVO CONTROL SYSTEM WIRING	
DIAGRAM	20
2.3. 3 Main power circuit connection	20
Chapter 3 Port Description and Wiring错误! 未定义书	途。
3.1 Distribution of each port of servo driver错误!未定义书	} 签。
3.1.1JAND-P28 Series Drive Port Distribution错误!未定	፤义书
签。	
3.1.2JAND-DB44 Series Drive Port Distribution	23

3.2 Servo drive CN1 control port description	24
3.2.1JAND-P28 Servo Driver CN1 Control Port Definition.	24
3.2.1JAND-DB44 Servo Driver CN1 Control Port Definition	1
	25
3.2. 3 JAND-P28 Servo DriverCN1 Control Port Connection	1
Description	27
3.2. 4 JAND-DB44 Servo DriverCN1 Control Port Connection	on
Description	29
3.2. 5Schematic diagram of control connection of band brake	Э
	31
3.3 Drive CN2 Encoder Port Description	32
3.4 Drive CN3/CN4 Port Description	32
3.5 Drive CN5 Port Description	33
3.6 Description of power supply and motor power line port	33
Chapter IV Installation Instructions	35
4.1 Installation size	35
4.2 Installation and use environment	37
Chapter V Panel Display Description and Settings	38
5.1 Introduction to the functions of each part of the panel	38
5.2 Operation mode switching process	39
5.3 status display	40
5.4 Parameter setting writing and saving method	41
Chapter VI Control Mode and Setting	43
6.1 position control	43
6.1.1 Position control wiring diagram	43
6.1.2 JAND-P28 Position Control Wiring Diagram	45
6.1.3JAND-DB44 Position Control Wiring Diagram	46
6.1.4 Position Control Mode Parameter Description	47

6.1.5 Example of electronic gear ratio calculation	
6.2 speed control	51
6.2.1 Speed Control Wiring Diagram	51
6.2.2 Speed Control Mode Parameter Description	54
6.3 torque control	55
6.3.1 Torque Control Wiring Diagram	55
6.3.2 Torque Control Mode Parameter Description	
Chapter VII Trial Operation and Parameter Adjustment	59
7.1 Commissioning	59
7.1.1 Pre-Run Testing	59
7.1.2 No-load commissioning test	60
7.2 parameter adjustment	63
7.3 manual gain adjustment	65
7.3.1 Basic parameters	65
7.3.2 gain switching	68
7.3.3 feedforward function	69
7.3.4 resonance suppression	71
Chapter 8 Parameters and Functions	77
8.1 Parameter List	77
8.2 Parameter Description	111
8.2.1 P00-xx motor and driver parameters	112
8.2.2 P01-xx Main Control Parameters	117
8.2.3 P02-xx Gain Class Parameters	121
8.2.4 P03-xx Position Parameters	129
8.2.5 P04-xx Speed Parameter	132
8.2.6 P05-xx Torque Parameters	134
8.2.7 P06-xx I/O Parameters	136
8.2.8 P08-xx Advanced Function Parameters	142

8.3 List of Monitoring Items	146
8.4 auxiliary function	149
Chapter IX Fault Analysis and Treatment	154
9.1 Fault alarm information table	154
9.2 Fault alarm cause and treatment	156
Chapter X Communication	169
10.1 Modbus communication parameter setting	169
10.2 Modbus communication supports reading and writing	
parameter setting	170
10.3 Overview of Modbus Communication Protocol	173
10.3.1 Introduction	173
10.3.2 Communication Package	173
10.3.3 Slave Addresses and Sending Requests	174
10.4 function number	174
10.4.1 Function No. 03: read hold register	174
10.4.2 Function No. 06: Adjust a single register	175
10.4.3 Function No. 10: adjustment register	176
10.4.4 Data start address	177
10.5 dead time	178
10.6 Response of Exception Procedure	178
Chapter 11 Instructions for Use of Special Functions	179
11.1 Absolute encoder use	179
11.1.1 Functional description	179
11.1.2 Basic setting and description of MODBUS-base	d
communication servo	180
11.1.3Absolute data address based on MODBUS	
communication	180
11.1.4 Alarm handling related to absolute encoder	181

11.1.5 Absolute Encoder Battery Replacement	
11.2 home reset function	
11.2.1 Functional description	
11.2.2 Basic setting and description of servo	
11.2.3 Precautions for use of zero point reset	
11.2.4 Block diagram of zero-return operation	

Chapter I Safety Precautions

In order to prevent personal and property safety, please observe the following precautions and make the following marks for distinction:

A Dange	Indicates a high probability of death or major injury
Attenti	Indicates a high risk of minor injury or property damage
\oslash	Indicates a prohibited item

1.1 Receiving and installation precautions

Danger: 1. Please use the driver and motor in the specified way, otherwise it will cause equipment damage or

cause fire.

 It is forbidden to use in places with severe water vapor, flammable gas, corrosive gas, etc., otherwise it will cause electric shock, fire, equipment damage, etc.

1.2 Wiring Precautions

Danger: 1. Do not connect the driver power supply to the U, V, W motor output terminals, otherwise the

driver will be damaged, which may cause personal injury or fire.

2. Please confirm that the connecting wires of the power supply and motor output terminals are locked, otherwise it may cause sparks and cause fire.

3, please correctly select the power cord and motor power extension line, to avoid the wire to withstand the current capacity is not enough to cause fire.

4. Please confirm that the driver shell and motor are grounded. Poor grounding may cause electric shock.

Note: 1. Please do not tie the motor power line and signal line together or pass through the same pipe to prevent interference with the signal.

2, signal line, encoder feedback extension line, please use multi-stranded shielded wire, strengthen anti-interference ability.

- After the drive is powered off, there is still high voltage inside. Please do not touch the power terminal within 5 minutes, and confirm that the discharge indicator is off before operating.
- 4. Before power-on, please confirm whether the wiring is connected correctly.

1.3 Precautions for operation and operation

Danger: 1. Before the equipment is installed, please run it with no load to avoid accidents.

2. Do not allow untrained personnel to operate to prevent equipment damage and personal injury caused by misoperation.

3. During normal operation, please do not touch the radiator of the drive and its interior with your hands to prevent high temperature burns or electric shock.

Note: 1, please adjust the driver parameters, and then long-term test, to prevent the use of poor drivers and equipment.

2, please confirm the equipment start, emergency stop, close and other switches are effective and then run the equipment.

3. Please do not switch the power supply frequently.

1.4 Precautions for maintenance and inspection

1. During operation, it is forbidden to touch the inside of the driver and motor to prevent electric shock.

- 2. Do not touch the power supply and power terminals within 5 minutes after the power supply is turned off to prevent electric shock.
- 3. Do not change the connection line under the condition of power supply, so as to prevent electric shock or personal injury.
- 4. Operation and routine maintenance must be carried out by trained professionals.
- 5. Please do not disassemble and repair except our company personnel.

Chapter IIProduct Introduction

2.1 servo driver

2.1.1 General

JAND_P28/DB44 series universal servo driver is a high-performance AC servo unit developed by JMC. This series of servo driver adopts advanced DSP chip for motor control, large-scale programmable gate array (FPGA) and IPM power module, which has the characteristics of small size, high integration, stable performance and reliable protection. It has rich digital and analog I/O interfaces, can be used with a variety of host computer devices, and supports MODBUS communication protocol to facilitate networking. Through the optimized PID control algorithm, the position, speed, torque accuracy of the full digital control, with high precision, fast response and other advantages. Supports 17-bit and 23-bit high-precision absolute encoder motors to meet different customer performance requirements. Widely used in CNC machine tools, printing and packaging machinery, textile machinery, robots, automated production lines and other automation fields.

2.1.2 Main Features

- Using DSP+FPGA dual-chip platform and optimized current loop design, the driver has the characteristics of high dynamic response, very short setting time, stable operation and small vibration when stopping.
- 2. With automatic gain adjustment module, users can choose the rigidity level according to their needs.
- 3. Built-in FIR filter and multi-notch filter can automatically identify and suppress mechanical vibration.
- 4. Built-in disturbance torque observer makes the actuator have strong anti-external disturbance ability.
- With a variety of control modes to choose from, position control, speed control, torque control, can switch various control modes.
- 6. The position pulse input frequency is up to 1MHz, and supports multiple position command modes such as pulse + direction, orthogonal pulse, and double pulse.
- With RS485 interface, support MODBUS communication, with multi-turn absolute encoder with memory function, it can be flexibly applied to manipulator and other industries.
- There are programmable 5-way INPUT and 4-way OUTPUT ports, users can customize the input and output through parameter settings, and the application is flexible.

- 9. Supports 17-bit and 23-bit high-precision absolute encoders.
- 10. It has perfect protection functions such as overvoltage, undervoltage, overspeed, overload, excessive position deviation, encoder error, etc., and can remember 8 groups of historical fault information.
- 11. With rich monitoring items, users can select the desired monitoring items to monitor the operation status during use.
- 12. The driver can communicate with PC through MINI USB interface, which realizes simple and quick debugging of servo drive system.

2.1.3 Drive Specifications

1. Electrical specifications

Three-phase 220V class servo driver

Model:	100	200	400	750	1500
JAND***2-P28/DB44	(P28 only)				
Continuous input current	1.1	1.9	3.2	6.7	8.8
Arms					
Continuous output current	0.91	1.6	2.8	5.5	8
Arms					
Maximum output current	2.9	5.8	9.6	16.9	19
Arms					
Input power supply Vac	Single phase AC180-240V, 50/60Hz				Single phase/three
	phase 220Vac				
Brake processing function	None (if external resistors are required) Built-in braking resistor				oraking resistor

2. Basic specifications

Item Desc				
control mode		single-phase full-wave rectifier		
		IGBT PWM control sine wave current drive mode		
Feedback		absolute encoder		
Terms of Use	Temperature	Working temperature: 0∼55℃ Storage: -25~85℃		

	humidity	Work: 10% to 90%		
	altitude	<1000m, above 1000 m, should be used in accordance with		
		GB/T 3859.2-93 derating		
		Protection class: IP10 Cleanliness: 2		
	protection class	No corrosive gas, flammable gas, no oil, water splash,		
		dust, salt and less metal powder environment		
	Speed adjustment	1:6000		
	range			
		±0.01%: external load variation 0~100%		
	steady speed accuracy	$\pm 0.01\%$: $\pm 10\%$ power input variation at 220V		
performance		$\pm 0.1\%$: Ambient $\pm 25\%$ (25%)		
	speed response	2000Hz		
	frequency			
	Torque control	±2%		
	accuracy			
	Encoder frequency	Phase A, Phase B differential output		
	division pulse	Z-phase differential output or open-collector output		
	output	Frequency division pulse number: can be set arbitrarily		
	(P28 Series without			
	this output)			
		Number of points: 5		
		Functions: servo ON, alarm clearing, forward overtravel signal		
		input, reverse overtravel signal input, control mode switching, P		
		action command input, forward rotation side external torque		
	P28	limit, reverse rotation side external torque limit, gain switching		
input signal		input, zero position fixing input, command pulse prohibition		
		input, encoder absolute value data request input, internal set		
		speed switching input 1, internal set speed switching input 2,		
		internal set speed switching input 3, position command clearing		
		input, etc.		
input/output	P28	Number of points: 4		

signal	output signal	Function: alarm output, band brake open output, servo ready	
		output, positioning completion output, positioning approach	
		output, speed consistent output, motor zero speed output, torque	
		limit detection output, speed limit detection output, warning	
		output, command pulse input magnification switching output	
		Number of points: 8	
		Functions: servo ON, alarm clearing, forward overtravel signal	
		input, reverse overtravel signal input, control mode switching, P	
		action command input, forward rotation side external torque	
	DB44	limit, reverse rotation side external torque limit, gain switching	
	input signal	input, zero position fixing input, command pulse prohibition	
		input, encoder absolute value data request input, internal set	
		speed switching input 1, internal set speed switching input 2,	
		internal set speed switching input 3, position command clearing	
		input, etc.	
		Number of points: 5	
		Function: alarm output, band brake open output, servo ready	
	DB44	output, positioning completion output, positioning approach	
	output signal	output, speed consistent output, motor zero speed output, torque	
		limit detection output, speed limit detection output, warning	
		output, command pulse input magnification switching output	
display	function	High voltage power indicator, 6-bit 8-segment LED	
	RS485	Support MODBUS protocol	
communication		Axis address: set by parameter	
function MINIUSB Connect PC for debugging, USB communic		Connect PC for debugging, USB communication	
regeneration treatment		Built-in regenerative resistor or external	
		regenerative resistor	
protection function	on	Overvoltage, undervoltage, overcurrent, overload, etc.	

2.1.4 Servo driver nameplate and model description

1、 Description of nameplate contents

2.2 servo motor

2.2.1 General

JAND-P28/DB44 series servo motor is a kind of high speed and high precision servo motor developed by JMC to meet the requirements of modern automatic control. This series of servo motor can control the speed and position accuracy very accurately, and can convert the voltage signal into torque and speed to drive the control object. This series of servo motor rotor speed is controlled by the input signal, and can respond quickly, in the automatic control system, used as the executive element, and has the electrical and mechanical time constant small, high linearity, starting voltage and other characteristics, can receive the electrical signal into the motor shaft angular displacement or angular velocity output, and can real-time feedback signal to the servo driver for adjustment, to achieve high-precision control.

2.2.2 Main Features

- 1. high-energy magnetic force
- 2. Short time 300% overload capability
- 3. Flange size (mm): 40, 60, 80, 110, 130
- 4. Power: 0.1-1.5KW optional
- 5. Low noise, low heat, high precision, high speed, etc.

2.2.3 Servo motor nameplate and model description

1. Description of nameplate content

2. the servo control system is connecte with that main power supply loop

2.3.1Wiring diagram

2.3. 2 DB44 SERVO CONTROL SYSTEM WIRING DIAGRAM

The servo drive is directly connected to the industrial power supply and does not use power isolation such as transformers. To prevent cross electric shock of servo system, use fuse or circuit breaker for wiring on input power supply. Since the servo drive does not have a built-in ground protection circuit, in order to make the system safer, please use a leakage circuit breaker for overload and short-circuit protection or a leakage circuit breaker for ground protection.

2.3.3 Main power circuit connection

1, single-phase power connection

Note:

- 1. 200/400W drive power connections Connect L1/L2 as shown above
- 2. The power connection terminals of 750W driver are identified as L1/L2/L3, which are connected according to
- L1/L2, and L3 is an empty pin.
- 3. The 1500W drives L1/L2/L3 are all active connections, single or three phase connections are selected depending on the load power.

Chapter 3 Port Description and Wiring

- 3.1 Port distribution of the servo driver
- 3.1.1 JAND-P28 Port distribution of the servo driver

3.1.2JAND-DB44 Series Drive Port Distribution

To prevent electric shock, be

sure to connect

3.2 Servo drive CN1 control port description

3.2.1JAND-P28 Servo Driver CN1 Control Port Definition

The upper control and driver connection interface is used for the upper computer to control the driver and the driver feedback output

CN1 pin schematic		mark	definition	standard voltage	
			numbe		
			r	405 0 1	105
			485+	485 Signal +	485+
			485-	485signals-	485-
			GND	signal ground	signal ground
			Ai1	analog control positive	± 10 VDC input
	48	5+	AGND	analogously	simulatively
CGND	48	35-	24V_P+	24V pulse input positive	24V signal
CANL	GI	ND	PUL+	5V pulse input positive	5V signal
CANH	Ai1	AGND	PUL-	pulse negative	pulse negative
AGND Ai1	r		24V_D+	24V direction input positive	24V signal
485-	PUL-	DIR-	DIR+	5V direction input positive	5V signal
485+	PUL+	DIR+	DIR-	negative direction	negative direction
	24V_P+	24V_D+	24V	24V output (used as external	Maximum allowable output
DO4+ DI4	24V	24VGND		I/O)	current 100mA
DO3+ DI3	DI_COM	DO123-	24VGND	24V output ground (used as	Maximum allowable output
DO2+ DI2	DI1	DO1+		external I/O)	current 100mA
DO1+ DI1	DI2	DO2+	DI_COM	input common	24V/GND
NC NC	DI3	DO3+	DI1	Digital Input 1	GND/24V
24V_D+ 24V_P+	DI4	DO4+	DI2	Digital Input 2	GND/24V
DIR- PUL-	DI5	DO4-	DI3	Digital Input 3	GND/24V
			DI4	Digital Input 4	GND/24V

100W	200/400/750/1500W	DI5	Digital Input 5 GND/24V	
		D0123-	Digital Output 123 Common	GND
			Negative	
		D01+	Digital Output Port 1 Positive	DO1+ high terminal
		D02+	Digital Output Port 2 Positive	DO2+ high terminal
		D03+	Digital Output Port 3 Positive	DO3+ high terminal
		D04+	Digital Output Port 4 Positive	DO4+ high terminal
		D04-	Digital Output Port 4 Negative	DO4-Low terminal

Note:

1. For the custom function setting of digital input (DI) and output (DO) ports, please refer to the parameter

description in Chapter 8.

3.2.1JAND-DB44 Servo Driver CN1 Control Port Definition

The upper control and driver connection interface is used for the upper computer to control the driver and the driver

feedback output

Definition of each pinof CN1terminal:

pin number	label	definition	Description
1	DO4+	digital output positive	Custom output port
2	DO3-	Digital Output Negative	Custom output port
3	DO3+	digital output positive	Custom output port
4	DO2-	Digital Output Negative	Custom output port
5	DO2+	digital output positive	Custom output port
6	DO1-	Digital Output Negative	Custom output port
7	DO1+	digital output positive	Custom output port

8	DI4-	Digital Input Negative	Custom Input Port
9	DI1-	Digital Input Negative	Custom Input Port
10	DI2-	Digital Input Negative	Custom Input Port
11	COM+	common input	High level 24V active
12	DI6-	Digital Input Negative	Custom Input Port
13	OZ+	Encoder Z phase positive output	
14	24V GND	+24V ground	
15	+5V	+5V output (for external I/O)	Maximum allowable output current: 150mA
16	GND	digitally	
17	+24V	+24V output (for external I/O)	Maximum allowable output current: 150mA
18	T_REF	Torque analog control	
		positive	
19	GNDA	simulatively	
20	V_REF	Speed analog control positive	
21	OA+	Encoder Phase A Positive Output	
22	OA-	Encoder Phase A Negative Output	
23	OB-	Encoder Phase B Negative Output	
24	OZ-	Encoder Z phase negative output	
25	OB+	Encoder Phase B Positive Output	
26	DO4-	Digital Output Negative	Custom output port
27	DO5-	Digital Output Negative	Custom output port
28	DO5+	digital output positive	Custom output port
29	GND	digitally	
30	DI8-	Digital Input Negative	Custom Input Port
31	DI7-	Digital Input Negative	Custom Input Port
32	Empty		
33	DI5-	Digital Input Negative	Custom Input Port
34	DI3-	Digital Input Negative	Custom Input Port
35	24V PULS+/	24V pulse and direction positive	High level 24V active
	24V SIGN+	(24 pulse and direction share this	
		pin)	
36	HPUL-	high-speed pulse negative	
37	SIGN+	positive direction	High level 5V active
38	HPUL+	high speed pulse positive	

39	SIGN-	negative direction	Low 0V active
40	HSIGN-	high speed direction negative	
41	PULS+	pulse positive	High level 5V active
42	HSIGN+	High speed heading	
43	PULS-	pulse negative	Low 0V active
44	OCZ	Encoder Z phase open collector	
		output	

Note:

1, CN1 terminal wiring, 24V PULS+ and PULS+ share PULS-, 24V SIGN+ and SIGN+ share SIGN-, the only

difference is a 24V high input, a 5V high input.

2. For the custom function setting of digital input (DI) and output (DO) ports, please refer to Chapter 8 Parameter

Description for setting.

3.2. 3 JAND-P28 Servo DriverCN1 Control Port Connection Description

The digital inputsDI (DI1-DI5) can be connected using switch, relay, open collector transistor circuits. (See 8.2.7

P06-xx I/O parameter description for the function setting of input I/O port)

Servo drive

The digital outputDO (DO1-DO4) outputs can be connected to relays, optocouplers, etc. Wherein, D01-D03 is the common negative terminal (**DO123**-) output circuit (as shown on the left of the figure below), and DO4 is the optocoupler output (equivalent to a switch with polarity). Power supply voltage range**5-24V**. (See 8.2.7 P06-xx I/O parameter description for the function setting of output I/O port)

control relay

Controlled optical coupler

Effective voltage range of speed and torque control analog quantity control input (-10V~10VDC), command value corresponding to this voltage range can be set by following parameters: P06-40 speed analog command input gain, P06-43 torque analog command input gain. Please read the detailed description of parameters for specific setting methods.

3.2. 4 JAND-DB44 Servo DriverCN1 Control Port **Connection Description**

The digital inputsDI (DI1-DI8) can be connected using switch, relay, open collector transistor circuits. Power can be supplied from either the drive's internal power supply or an external power supply. (See 8.2.7 P06-xx I/O parameter description for the function setting of input I/O port)

Use an external power input

Use internal power input

Servo drive

Use internal power input

Digital OutputsDO(DO1-DO5) Outputs can be connected to relays, optocouplers, etc. You can use the power supply provided inside the drive or you can use an external power supply. When using the internal power supply, drive the internal 24V power supply can only provide 150mA current, when the load is greater than 150mA, please be sure to use the external power supply, the supply voltage range is 5-24V. (See 8.2.7 P06-xx I/O parameter description for the function setting of output I/O port)

(Relay)Use internal power

Use external power input

(optocoupler) using external power supply (optocoupler) using internal power supply Effective voltage range of speed and torque control analog quantity control input (-10V~10V), command value corresponding to this voltage range can be set by following parameters: P06-40 speed analog command input gain,P06-43 torque analog command input gain. Please read the detailed description of parameters for specific setting methods.

External power supply analog signal is given

External power supply analog signal setting

3.2. 5 Schematic diagram of control connection of band brake

P28 Schematic diagram of servo driver brake

DB44 Schematic diagram of servo driver brake

Note: 1. DO 2+/D123-in CN1 controls the relay coil for the factory contracting brake function of P28 driver, and the relay switch controls the contracting brake coil.

2. DB44 driver factory contracting brake function is controlled byDO2(pin 5 and pin 4) in CN1, and relay switch controls contracting brake coil.

3. It is recommended that the contracting brake coil be powered by a separate power supply.

3.3 Drive CN2 Encoder Port Description

3.4 Drive CN3/CN4 Port Description

pin		label		Definition	Note:
number					
1	1 +5V		Output 5V power		
				supply	
2		GND	Output power ground		
3		NC	None		
4		NC		None	
5		T+]	Bus encoder T+	Bus type drive
					special
6		T-	Bus encoder T-		Bus type drive
					special
pin number		labe	el Defii		nition
PIN1		CAN	TH CNAH(for		bus servo)
PIN2		CAN	JL CNAL(for		bus servo)
PIN3		CGN	D CGND(bus se		ervo dedicated)
PIN4		reser	ve	reserve	
PIN5		reserve		reserve	
PIN6		GND		reserve	
PIN7		485-		Reserved (for 485 communication,	
				please use the cor	responding port of
				CN1)	
PIN8		485-	ł	Reserved (for 485 communication,	
				please use the cor	responding port of

0755-26509689

3.5 Drive CN5 Port Description

pin number	label	Definition
1	V Bus	Power supply 5V
2	D-	Data-
3	D+	Data +
4	ID	Empty
5	GND	land

Note: CN5 is a standard Micro USB interface, and the port is connected to the upper computer using a standard Micro USB cable.

3.6 Description of power supply and motor power line port

L1、L2(200/400W)	Main circuit power input terminal	Single phase 220V AC, connected toL1/L2 port
L1、L2、L3(750W)	Main circuit power input terminal	Single-phase 220V AC, connected toL1/L2 port, L3 is empty pin
L1、L2、L3(1500W)	Main circuit power input terminal	Single/Three phase 220V AC toL1/L2/L3 port
U、V、W	Motor power line connection end	Connect the motor power line (connect the corresponding interface according to the power line mark)
P+、D、C	regenerative resistor connection	When using the built-in regenerative resistor, short-circuit P+ and D (our 750W and above drivers have built-in regenerative resistors) When using an external resistor, disconnect the P+ and D short wires, and connect both ends of the resistor to the P+ and C terminals
PE Ground Port	Drive Protected Ground Port	Connect the ground wire of power supply and motor

Note:

- Be sure to connect the electromagnetic contactor between the power supply and the main circuit power supply of the servo driver, so that the power supply can be cut off in case of failure of the servo driver to prevent fire caused by excessive current.
- When the feedback energy exceeds the absorption capacity of the capacitor, E.402 overvoltage alarm will
 occur. In this case, external regenerative resistance shall be connected, and P00-30~P00-35 shall be set to
 corresponding values. See8.2 Parameter Analysis Description for details.

Chapter IV Installation Instructions

4.1 Installation size

400W/200WAC servo driver (unit: mm)

Note:

The normal installation direction of the servo driver must be vertical and upright, with the top facing up to facilitate heat dissipation.

2, the driver should be installed to ensure that the equipment is well ventilated, there are multiple drives in the cabinet in parallel to ensure that the distance between each other is not less than 5CM.

3, in order to ensure the safety of use, be sure to drive the ground protection terminal and equipment protection to a good connection!

4.2 Installation and use environment

The installation and use environment has a direct impact on the normal operation and service life of the product, so the following conditions must be met:

- 1. Working environment temperature: 0~55°C; Working environment humidity: 1 0%~9 0% (no condensation).
- 2. Storage environment: -20°C~+85°C; storage environment humidity:90% or less (no condensation).
- 3. Vibration: 0.5G or less.
- 4. Prevent rain dripping or wet environment.
- 5. Avoid exposure to sunlight.
- 6. Prevent oil mist and salt erosion.
- 7. Protection against corrosive liquids, gases, etc.
- 8. Prevent the intrusion of dust, cotton wool and metal fines.
- 9. Keep away from radioactive materials and combustibles.
- 10. Space shall be reserved around the driver placement position in the cabinet to facilitate loading, unloading and maintenance.
- 11. Pay attention to the air flow inside the cabinet. If necessary, install an external fan to enhance the air flow and reduce the ambient temperature of the drive to facilitate heat dissipation; The long-term working temperature is below 55 °C.
- Try to avoid the vibration source nearby, and install damping device such as vibration absorber or anti-vibration rubber gasket.
- 13. If there is an electromagnetic interference source nearby, the power supply and control circuit of the driver are susceptible to interference and cause misoperation. A noise filter can be added or various effective anti-interference measures can be taken to ensure the normal operation of the driver (the noise filter will increase the leakage current, and an isolation transformer needs to be installed at the input end of the driver power supply).

Chapter V Panel Display Description and Settings

5.1 Introduction to the functions of each part of the panel

JAND series AC servo panel adopts six-digit LED digital tube to display the status; 5-bit key input command, specific key functions are as follows:

panel key label	Definition	Note:	
Μ	M key	Function switch and cancel exit	
	UP key	Display change, value increment function	
▼	DOWN key	Display change, value reduction function	
	LEFT key	shift function Used to switch high/low display in parameter mode	
ENT	ENT key	Determine or save function	

Remarks:

ENT keylong press indicates OK or save function.

In the monitoring and parameter interface, press and hold the UP/DOWNkey to quickly flip.

5.2 Operation mode switching process

JAND_P28 series AC servo has four function modes, namely status display mode, monitoring mode, parameter setting mode and auxiliary mode. The switching process between them is as follows:

Note: After entering the mode setup by pressing the ENT key, you can exit the mode selection by pressing theM key

5.3 status display

The display judgment is as follows:

H.H.	8.8.8.8.
位数据	缩略符号

Status display bit data meaning:

display	implication	display	implication
AA	Power-on display of control circuit	AA	Main circuit power ready display
	power supply		
na	Speed and torque control: consistent		Rotation Check Out Display
	speed display		
	Position control: positioning		
	completion display		
	baseblock display		Speed and torque control: speed
	Servo OFF state lights up, ON state		command input
	goes out		Position control: displayed in command
			pulse input

Status display abbreviation symbol meaning:

display	implication
8.8.9.9.	Servo not ready (power supply not powered)
8.8.9.9.	Servo ready (servo motor not energized)
8. 8.8. 8.	In servo enable state (servo motor is energized)
8. 8.8. E.	Indicates that the input port of forward overtravel signal is in
	effective state, and the motor forward rotation command is invalid
8. 8.8. 8.	Indicates that the reverse overtravel signal input port is in the active

	state, and the motor reverse command is invalid
BBAASA	Servo-related operations completed correctly
89868	The servo is in the enabling state and cannot be operated. The servo
	can be operated after the enabling state is turned off.
BABBA	Invalid value entered, servo does not perform current operation
8.8.8.8	The relevant parameters of the servo are locked and can be operated
	only after unlocking
.8.3.5.8 . 1 .	Servo fault display, please refer to Chapter 9 for fault definition

5.4 Parameter setting writing and saving method

P01-01Displ

Chapter VI Control Mode and Setting

6.1 position control

6.1.1 Position control wiring diagram

JAND-P28 Position Control Wiring Diagram

JAND-DB44 Series Position Control Wiring Diagram

6.1.2 JAND-P28 Position Control Wiring Diagram

Position control commands are commonly differential signals, open-collector signals. It is recommended to use twisted pair shielded wire for position signal connection line to improve anti-interference ability. In general, the single-chip controller system uses this position control wiring method. The maximum input pulse frequency for this type of control is 500KHz

Differential signal input

Description of open collector input mode at controller end: The single-ended input mode can use either the power supply provided inside the drive or an external power supply. However, do not use dual power inputs to avoid damage to the drive. Under normal circumstances, PLC controller systems use this position control wiring method

Open collector input

NOTE: When using a 24V signal, connect the 24V port

The pulse command input can accept both differential signal inputs and open collector inputs. The differential signal input receives a maximum frequency of 500K and the open collector input receives a maximum frequency of 200K.

6.1.3JAND-DB44 Position Control Wiring Diagram

Description of differential signal mode at controller end: Direction + pulse input is divided into: 5V, 24V signal input mode, using twisted pair connection, can improve anti-interference ability. In general, the single-chip controller system uses this position control wiring method. The maximum input pulse frequency for this type of control is 500KHz

Differential signal input

open-collector input

Description of open collector input mode: The single-ended input mode can use either the power supply provided inside the drive or an external power supply. However, do not use dual power inputs to avoid damage to the drive. Under normal circumstances, PLC controller systems use this position control wiring method The pulse command input can be divided into differential signal input and open collector input. The differential signal input receives a maximum frequency of 500K and the open collector input receives a maximum frequency of 200K.

6.1.4 Position Control Mode Parameter Description

Param Code	Name	setting range	setting	Note:
P01-01	Control mode setting	0-5	0	0: Position mode 1: Speed Mode 2: Torque mode 3: Speed, torque 4: Position, Speed 5: position, torque
P03-00	Location Command Source	0-3	0	 pulse command Reserved Bus instruction Built-in

1, motor and driver control parameters

				multi-segment position
P03-01.0	command pulse mode	0-3	1	<pre>0: Quadrature pulse command 1: direction + pulse command 2 or 3: Double pulse command</pre>
P03-03.0	instruction pulse negation	0-1	0	instruction pulse negation
P03-09	Number of command pulses for one rotation of motor	0-1073741822	10000	Set according to user requirements See 8.2 Parameter Description fordetails
P03-40	Molecule of electronic gear 1	1-1073741822	64	Set according to user
P03-42	Denominator of electronic gear 1	1-1073741822	1	requirements See 8.2 Parameter Description for details
P03-15	Excessive position deviation setting	0-1073741822	90000	Set according to user requirements
P03-25	The number of pulses output by the absolute value motor in one rotation	1-65535	2500	Set according to user requirements

2. Gain parameters

Please refer to the parameter adjustment inchapter 7 for adjustment

6.1.5 Example of electronic gear ratio calculation

1, ball screw drive

Assumptions:

- (1) Mechanical parameters: reduction ratio R is 2/1, lead screw is 10mm
- (2) Absolute encoder position ring resolution per turn: 8388608
- (3) Load displacement corresponding to 1 position command (command unit) is required: 0.001mm

Then:

From (1) and (3), the value of position command (command unit) required for 1 revolution of lead screw (10mm movement of table) can be obtained:

$$\frac{10}{0.001} = 10000$$

The electronic gear ratio is: (B is numerator, A is denominator)

$$\frac{\mathbf{B}}{\mathbf{A}} = \frac{8388608}{10000} \times \frac{2}{1} = \frac{1048576}{625}$$

Last parameter P03-40 set to 1048576, P03-42 set to 625

2, pulley drive

Assumptions:

(1) Mechanical parameters: reduction ratio R: 5/1, pulley diameter: 0.2m(pulley circumference: 0.628m)

(2) Absolute encoder position ring resolution per turn: 8388608

(3) Load displacement corresponding to 1 position command (command unit) is required: 0.000005m Then: From (1) and (3), the value of position command (command unit) required for one rotation of pulley (load) can be obtained:

$$\frac{0.628}{0.000005}$$
 = 125600

The electronic gear ratio is: (B is numerator, A is denominator)

$$\frac{B}{A} = \frac{8388608}{125600} \times \frac{5}{1} = \frac{262144}{785}$$

Finally parameter P03-40 is set to 262144 and P03-42 is set to 785 3, rotating load

Assumptions:

(1) Mechanical parameters: the reduction ratio R is 10/1, and the rotation angle of the load shaft is 360°

(2) Absolute encoder position ring resolution per turn: 8388608

(3) Load displacement corresponding to 1 position command (command unit): 0.01°

Then:

From (1) and (3), the position command (command unit) value required for one rotation of the load can be obtained:

$$\frac{360}{0.01} = 36000$$

The electronic gear ratio is: (B is numerator, A is denominator)

$$\frac{B}{A} = \frac{8388608}{36000} \times \frac{10}{1} = \frac{524288}{225}$$

Finally parameter PO3-40 is set to 524288 and PO3-42 to 225

Note: If the position command value required for calculating one rotation is an integer, it is recommended to directly set P03-09(number of command pulses for one rotation of the motor).

6.2 speed control

6.2.1 Speed Control Wiring Diagram

JAND-P28 Speed control wiring diagram

JAND-DB44 Speed control wiring diagram

6.2.2 Speed Control Mode Parameter Description

Param Code	Name	setting range	setting	Note:
P01-01	Control mode setting	0-5	1	0: Position mode 1: Speed Mode 2: Torque mode 3: Speed, torque 4: Position, Speed 5: position, torque
P04-00	Speed command source	0-3	0	0: External analog command 1: Set value of P04-02 2: Bus command 3: Internal multi-speed
P04-02	digital speed setpoint	-6000-6000	0	When P04-00 is set to 1, P04-02 is the speed setting
P04-06	forward speed limit	0-6300	6000	limiting forward speed
P04-07	reverse speed limit	-6300-0	-6000	limiting reverse speed
P06-05.0	Speed analog command selection	0-1	0	Select AI1 interface as input (P28 only)
P06-40	Speed analog command input gain	10-2000	300	Set according to user requirements See 8.2 Parameter Description for details

1, motor and driver control parameters

2. Gain parameters

Please refer to the parameter adjustment inchapter 7 for adjustment

6.3 torque control

6.3.1 Torque Control Wiring Diagram

JAND-P28 Torque control wiring diagram

JAND-DB44 Torque control wiring diagram

6.3.2 Torque Control Mode Parameter Description

Param Code	Name	setting range	setti ng	Note:
P01-01	Control mode setting	0-5	2	0: Position mode 1: Speed Mode 2: Torque mode 3: Speed, torque 4: Position, Speed 5: position, torque
P05-00	torque command source	0-3	0	0: analog command 1: set value of P05-03 2: bus command 3: built-in multi-stage torque
P05-01	Speed Limit Source Settings	0-3	1	0: Speed analog command 1: Set value of P05-02 2: Bus command 3: Built-in multi-speed
P05-02	Torque mode speed limit setpoint	0-6000	1000	Sets the maximum speed of the motor in torque mode. Valid when P05-01 is 1
P05-10	Internal forward torque limit	0-300	200	Limit forward torque value
P05-11	internal reverse torque limit	-300-0	-200	Limit reverse torque value
P06-05.1	Torque simulation command selection	0-1	1	Select AI1 interface as input (P28 only)
P06-43	Torque analog command input gain	0-100	10	Set according to user requirements See 8.2 Parameter Description fordetails

1, motor and driver control parameters

2. Gain parameter related to torque control command

Please refer to theparameter adjustmentinchapter 7 for adjustment

Chapter VII Trial Operation and Parameter Adjustment

7.1 Commissioning

7.1.1 Pre-Run Testing

In order to avoid damage to the servo driver or mechanism, please remove all loads of the servo motor before operation, and carefully check whether the following precautions are normal, and then power on for no-load test; After the no-load test is normal, the load of the servo motor can be connected for the next test.

Notes:

Test before	1,	Check the servo drive for visible visual damage
power-on	2、	Insulation treatment shall be applied to the connection part of the wiring terminal
	3、	Look inside the drive for foreign objects
	4、	Servo drives, motors and external regenerative resistors must not be placed on
		combustible objects
	5、	To avoid failure of electromagnetic brake, please check whether the power circuit
		can work normally by immediately stopping and cutting off the power circuit
	6,	Confirm whether the external power supply voltage of servo driver meets the
		requirements
	7、	Confirm whether the motor U, V, W power line, encoder line and signal line are
		connected correctly (label and IFU confirmation)

Detection at	1,	When the servo driver is powered up, do you hear the sound of relay action
power-up	2、	Whether the power indicator and LED display of servo driver are normal
	3、	Confirm whether the parameters are set correctly. There may be unexpected
		actions depending on the mechanical characteristics
		Do not make excessive and extreme adjustments to parameters
	4、	Whether the servo motor is self-locking
	5、	Please contact the manufacturer if the servo motor vibrates or makes excessive
		sound during operation

7.1.2 No-load commissioning test

 JoG mode no-load test run, the user can not need to connect additional wiring, for safety reasons, JoG no-load speed test, please fix the motor base, to prevent motor speed changes caused by the reaction force caused by danger. The following is a simple wiring diagram in JoG mode:

7.2 parameter adjustment

According to the equipment requirements, after selecting the appropriate control mode, the servo gain parameters need to be adjusted reasonably. The servo driver can drive the motor quickly and accurately, and maximize the

mechanical performance.	speed setting		Two lines
Gain setting: Low	Gair	n setting: Medium	Gain setting: High fincide
Feedforward			
Position loop gain: 800 Po	sition loop gain: 1600	Position loop gain: 16	500
Speed loop proportional ga	ain: 400	Speed loop proportional gain: 600	
Speed loop proportional gain	: 600		
Speed loop integration tim	e constant: 1000	Speed loop integration time consta	nt: 1000
Speed loop integration time c	constant: 1000		
Speed Feedforward Gain:	0 Speed Feedforward Gair	a: 0 Speed Feedforward Gain: 50	
Load inertia ratio: 100 Loa	nd inertia ratio: 100 Load i	nertia ratio: 100	

The servo gain is adjusted by several loop parameters (position loop, velocity loop, filter, etc.), which affect each other. Therefore, the gain setting needs to be balanced and adjusted according to certain rules.

The process of gain adjustment can be performed as shown in the following figure:

Calculate the device inertia ratio for input to P01-04 Or perform auxiiary function F19_JL measurements

Setting P01-02 to 1 or 2 According to the requirements, increase the p01-03 parameter value step, and when the operation noise occurs, reduce the parameter value of 2 levels

Setting P01-02 to 0, enter manual gain Adjustment mode

7.3 manual gain adjustment

7.3.1 Basic parameters

When the automatic gain adjustment fails to achieve the desired effect, the gain can be manually fine-tuned to

optimize the effect.

The servo system consists of three control loops, and the basic control block diagram is as follows:

The gain adjustment shall follow the sequence of inner loop and outer loop, first set the

load moment of inertia ratio P01-04, then adjust the gain of speed loop, and finally adjust the gain of position loop.

Speed loop gain: the setting value can be increased as much as possible under the condition of no vibration and no noise, which can improve the speed following performance and speed up the positioning time.

Speed integral constant: the smaller the set value, the faster the integral speed and the stronger the integral effect. If the value is too small, it is easy to produce vibration and noise.

paramete r code	Name	setting range	sett ing	Say it. Ming
P01-02.0	Real-time automatic adjustment mode	0-4	0	0: Manually adjust the rigidity. 1: Standard mode automatically adjusts rigidity. In this mode, parameters P02-00, P02-01, P02-10, P02-11, P02-13, P02-14, P08-20 and P08-21 will be automatically set

				 according to the rigidity level set in P01-03, and manual adjustment of these parameters will not work. The following parameters are set by the user: P02-03 (speed feedforward gain), P02-04 (speed feedforward smoothing constant). 2: Positioning mode automatically adjusts rigidity. In this mode, parameters P02-00, P02-01, P02 - 10, P02-11, P02-13, P02-14, P08-20 and P08-21 will be automatically set according to the rigidity level set in P01-03, and manual adjustment of these parameters will not work. The following parameters will be fixed and cannot be changed: P02-03 (speed feedforward gain): 30% P02-04 (speed feedforward smoothing constant): 50 3: Automatically adjust rigidity 2. In this mode, parameters P02-00, P02-01, P02-10, P02-11, P02-13 will be automatically set according to the rigidity level set in P01-03. The following parameters are set by the user: P02-03 (speed feedforward gain), P02-14 (speed integral constant 2), P08-20 (torque command filter constant 1), P08-21 (torque command filter constant 2) 4: Automatic adjustment, depending on parameters P01-05, P01-06
P01-03	Real-time automatic adjustment of stiffness settings	0-31	13	Built-in 32 kinds of gain parameters, when P01-02 is set to 1, 2, 3 when the effect. Can be directly called according to the actual situation, the larger the set value, the stronger the rigidity.
P02-00	Position Control Gain 1	0-20000	400	 The larger the setting value, the higher the gain, the greater the rigidity, and the smaller the position lag. However, if the value is too large, the system will oscillate and overshoot. Increase the value as much as possible without shock.

				► Gain at rest.		
P02-01	Position Control Gain 2	0-20000	400	 The larger the setting value, the higher the gain, the greater the rigidity, and the smaller the position lag. However, if the value is too large, the system will oscillate and overshoot. Increase the value as much as possible without shock. Gain during exercise. 		
P02-03	velocity feedforwar d gain	0-100	30	The larger the parameter value of the feedforward gain of the speed loop, the smaller the position tracking error of the system and the faster the response. However, if the feedforward gain is too large, the position loop of the system will be unstable, and it is easy to produce overshoot and oscillation.		
P02-04	velocity feedforwar d smoothing constant	0-6400	This parameter is used to set the speed loo feedforward filter time constant. The large 50 value, the greater the filtering effect, but same time the phase lag increases. The higher the setting value, the faster th 			
P02-10	Speed Proportion al Gain 1	1-20000	400	 The higher the setting value, the faster the speed response. The parameter value is set according to the load situation. Increase the value as much as possible without shock. Gain at rest. 		
P02-11	Velocity integral constant 1	10-51200	2000	 Integral time constant of speed regulator. The smaller the setting value, the faster the integral speed and the greater the stiffness. If it is too small, it is easy to produce vibration and noise. Reduce the value of this parameter as much as possible when the system does not oscillate. This parameter is for steady state response. 		
P02-13	Speed Proportion al Gain 2	1-20000	400	 The higher the setting value, the faster the speed response. The parameter value is set according to the load situation. Increase the value as much as possible without shock. 		

				► Gain during exercise.		
		10-51200 2000		 Integral time constant of speed regulator. The smaller the setting value, the faster the integral 		
	Velocity			speed and the greater the stiffness. If it is too		
P02-14	integral		2000	small, it is easy to produce vibration and noise.		
	constant 2			▶ Reduce the value of this parameter as much as		
				possible when the system does not oscillate.		
				 This parameter is for steady state response. 		

7.3.2 gain switching

The gain switching function can be triggered by the internal status of the servo or by the external DI port and is only

active in position control and speed control modes. Gain switching is used to:

Switch to a lower gain when the motor is at rest (servo enabled) to suppress vibration;

Switch to a higher gain when the motor is running (servo enabled) to shorten the positioning time;

switch to a higher gain in a motor run state to obtain better command following performance;

Depending on the use case, an external signal is used to switch between different gain settings.

Related parameters

|--|

code		range	setting	Measure	time
P02-30.0	Gain switching setting	0-1	0		Effective immediately
P02-30.1	Gain switching mode	0-9	0		Effective immediately
P02-31	Gain switching time 1	0-60000	100	ms	Effective
					immediately
P02-32	Gain switching time 2	0-60000	800	ms	Effective
					immediately
P02-33	Gain Switching Latency 1	0-60000	1000	ms	Effective
					immediately
P02-34	Gain Switching Latency 2	0-60000	100	ms	Effective
					immediately

7.3.3 feedforward function

Speed feedforward: During position control, the required speed control command is calculated from the position command and added to the output of the position regulator to reduce the position deviation and improve the response of the position control.

Torque Feedforward: The required torque command is calculated from the speed control command and added to the speed regulator output to improve the speed control response.

A. Speed Feedforward Usage Operation

With the speed feedforward smoothing constant set to 50 (0.5 ms), gradually increase the speed feedforward gain to meet the system requirements. However, too large velocity feedforward gain will cause position overshoot, which will prolong the setting time.

B. Torque Feedforward Usage Operation

Under the condition that the torque feedforward smoothing constant is set to 50, the torque feedforward gain is gradually increased to meet the system requirements.

Related parameters

Param Code	Name	setting range	leave the factory setting	Unit of Measure	Entry into force Time
P02-03	velocity feedforward gain	0-100	30	1%	Effectiv e immediat ely
P02-04	velocity feedforward smoothing constant	0-6400	50	0.01ms	Effectiv e immediat ely
P02-19	torque feedforward gain	0-200	0	1%	Effectiv e immediat ely

P02-20	torque feedforward smoothing constant	0-6400	80	0.01ms	Effectiv e immediat
					ely

7.3.4 resonance suppression

Too high stiffness and too fast response of servo system may cause resonance of mechanical system, which can be improved by reducing the gain of control loop. it is also possible to suppress resonance by use a low-pass filter and a trap without reduce that gain.

1. Resonance frequency detection

The resonance frequency of the mechanical system can be observed by monitoring the items d26.1.Fr and d28.2.Fr

2. Torque command low-pass filter (P08-20, P08-21)

The low-pass filter is used when the vibration frequency will shift, and it can have better effect when it is used for high frequency vibration. By setting the time constant of the filter, the resonance is attenuated near the resonance frequency. However, the low-pass filter will make the system phase lag, bandwidth reduction, phase margin reduction easily lead to loop oscillation. Therefore, it can only be used in high-frequency vibration occasions. Filter cutoff frequency (Hz)= 1/(2*pi*P08-20(ms)*0.001)

			leave		
			the		Entry
Param Code	Name	setting	factor	Unit of	into
		range	У	Measure	force
			settin		Time
			g		
					Effectiv
P08-20	Torque command filter constant	0-2500	100	0.01ms	е
					immediat
					ely
	the second torque command		100	0.01	Effectiv
PU8-21	filt constant	0-2500	100	0.01ms	е
		immediat			
--	--	----------			
		ely			

3. Notch filter

Notch filters are used when the system resonance frequency is fixed. The notch filter can suppress mechanical resonance by reducing the gain at a specific frequency. After setting the notch filter correctly, the vibration can be effectively suppressed, and the servo gain can be continuously increased. The servo is internally provided with a plurality of wave traps, and the first and second wave traps can be automatically set internally or manually input parameters. Other traps can only be set manually.

A. adaptive notch mode

When the self-tuning function is used, and P 08-25.0, P08-25.1 are set to 1, the servo system will automatically identify the current resonance frequency through the adaptive notch filter function module, and automatically configure the notch filter parameters.

B. Manually perform frequency identification and set trap parameters

The auxiliary function of the driver can be used to identify the vibration frequency and set the parameters of the trap. Note: This function is only to scan the maximum amplitude point of each frequency of the machine. This function scans out frequencies even if the machine itself does not have a mechanical resonance point. Use steps:

a) Confirm whether the first trap and the second trap allow setting. This can be determined by looking at parameter P08-24. if both that first trap and the second trap are enable. then the parameters of the first or second trap need to be set to the third trap and the corresponding 08-24. 0/1 is set to0. This means that the first/second trap can be reset.

b) Turn off the servo enable so that the servo is in the off enable state. Then the auxiliary function F 21 is executed

c) After the auxiliary function of F 21 is performed, the driver will give a certain excitation to the motor to trigger the mechanical resonance. The identified vibration frequency is then displayed on the drive LED.

d) If the frequency identification is correct, press and hold the Enter key, the driver will automatically set the current frequency parameter to the first/second trap, and set the corresponding P 08-24.0/1 to 1 to start the trap. Related parameters

Param	Nome	Noto
Code	Iname	Note.

P08-51	sweep torque	Setting range:1-300
	amplitude	sweep torque amplitude

C. Use the auxiliary function to identify the resonant frequency and set the trap parameters during machine operation

The auxiliary function of the driver can be used to identify the vibration frequency and set the parameters of the trap. The difference from the function of the previous point is that in the B item, when the mechanical off is enabled, the driver itself is excited to identify the resonance. Item C refers to the occurrence of resonance during normal operation of the machine, and identify the frequency. Use steps:

a) Confirm whether the first trap and the second trap allow setting. This can be determined by looking at parameter P08-24. if both that first trap and the second trap are enable. then the parameters of the first or second trap need to be set to the third trap and the corresponding 08-24. 0/1 is set to0. This means that the first/second trap can be reset.

b)Then perform auxiliary functionF22

c) After the F22 auxiliary function has been performed, the drive enters the frequency identification state for 10 s. During this time, the device is operated, and when a resonance point occurs, the driver will recognize it and display it on theLED. The sensitivity of frequency identification depends on parametersP02-51, P02-52.

d) If the frequency identification is correct, press and hold the Enter key, the driver will automatically set the current frequency parameter to the first/second trap, and set the corresponding P 08-24.0/1 to 1 to start the trap. Related parameters

Param Code	Name	Note:
P02- 51	Vibration detection sensitivity	Setting range: 50–500
P02- 52	Vibration detection level	Setting range: 0-5000 This parameter sets the vibration detection sensitivity of the adaptive notch filter. The smaller the parameter value, the more sensitive the detection sensitivity is

D. Manually set trap parameters

a) The resonance frequency of the mechanical system can be observed by monitoring the items d26.1.Fr and d28.2.Fr.

b) Input the resonance frequency observed in the previous step into the trap parameters, and input the width level and depth level of the set of traps at the same time.

c) If the vibration is suppressed, it means that the trap is working. Continue to increase the gain, and repeat the previous 2 steps when new vibrations occur.

d) If the vibration cannot be eliminated for a long time, please turn off the servo enable in time.

E. notch width rating

F. Strap width level = Strap width / center frequency of the notch filter

the notch width represent that frequency bandwidth over which the amplitude decay rate is-3 db relative to the notch cent frequency

G. notch depth rating

Strap depth level=output value/input value

At notch depth level 0, the input is completely rejected at the center frequency; At a depth level of 100, the input passes completely at the center frequency.

Related parameters

Param Code	Name	Note:
P08-30	Notch filter 1 frequency	Setting range: 300-5000, unit: Hz Center frequency of trap 1 When set to 5000, the trap is not valid
P08-31	Notch filter 1 width	Setting range:50-1000 Notch width class for Notch 1 is the ratio of the width to the center frequency
P08-32	Notch filter 1 Depth	Setting range:0-1000 Notch depth level for Notch 1 The ratio between the input and the output is given for the center frequency of the trap The larger this parameter, the smaller the notch depth and the weaker the effect

Relevant parameters of notch filter

			leave		Entry
Param	Y		the	Unit of	into
Code	Name	setting range	factory	Measure	force
		Nameleave setting rangeleave the gractoryNamesetting rangeUr factoryNable0-10Nable0-10Nable0-10Nable0-10Strequency50-500050001 Width50-1000700.0		Time	
					Effective
P08-24.0	First trap enable	0-1	0		immediate
					ly
	Second trap enable	0-1	0		Effective
P08-24.1					immediate
					ly
					Effective
P08-30	Notch Filter 1 Frequency	50-5000	5000	HZ	immediate
					ly
D00 01	N . 1 1711. 1 W.1.1	50, 1000	70	0.01	Effective
P08-31	Notch Filter I Width	50-1000	70	0.01	immediate

					ly
P08-32	Notch Filter 1 Depth	0-1000	0	0.001	Effective immediate ly
P08-33	Notch Filter 2 Frequency	50-5000	5000	HZ	Effective immediate ly
P08-34	Notch Filter 2 Width	50-1000	70	0.01	Effective immediate ly
P08-35	Notch Filter 2 Depth	0-1000	0	0.001	Effective immediate ly
P08-36	Notch Filter 3 Frequency	50-5000	5000	HZ	Effective immediate ly
P08-37	Notch filter 3 width	50-1000	70	0.01	Effective immediate ly
P08-38	Notch Filter 3 Depth	0-1000	0	0.001	Effective immediate ly

* Note: No. 1 and No. 2 traps need P 08-24 enabled to function. The third trap only needs to set the frequency parameter to work.

Chapter 8 Parameters and Functions

8.1 Parameter List

P00-xx indicates motor and driver parameters P01-xx Main Control Parameters P02-xx indicates gain class parameter P03-xx indicates position parameter

P04-xx indicates speed parameter

P05-xx indicates torque parameter

P06-xx indicates I/O parameters

P08-xx indicates advanced function parameters

The tag numbers0,1,2 and3 represent the tag numbers of the current parameter code value, and the tag numbers are sorted as3210; the tag numbers without values represent the entire parameter value

Param	Bi	name	unit	Parameter	leave	Setting	Effective
eter	t			range	the	mode	time
code	nu				factory		
	m						
	be						
	r						

P00-00		Motor number		0-2000	2000	Operation	Restart
						setting	takes
							effect
P00-01		Rated speed	rpm	1-12000		Operation	Restart
						setting	takes
							effect
P00-02		Rated torque	0.01Nm	1-65535		Operation	Restart
						setting	takes
							effect
P00-03		rated current	0.01A	1-65535		Operation	Restart
						setting	takes
							effect
P00-04		rotary inertia	0.01kgcm2	1-65535		Operation	Restart
						setting	takes
							effect
P00-05		Motor pole logarithm	logarithm	1-50		Operation	Restart
						setting	takes
							effect
P00-06		Current motor number		0-0		Operation	Restart
						setting	takes
							effect
	0	Encoder _ type		0-1	one	Operation	Restart
						setting	takes
							effect
P00-07	on	Encoder _ Shielded		0-1	one	Operation	Restart
	e	Overheat Alarm				setting	takes
							effect
	2	Encoder _ Shielded		0-1	one	Operation	Restart

		Multi-Circle Alarm				setting	takes
							effect
	thr	Encoder _ Shielded Battery		0-1	one	Operation	Restart
	ee	Alarm				setting	takes
							effect
P00-08		Encoder zero offset		0-360	0	Operation	Restart
						setting	takes
							effect
P00-09		rated voltage	V	1-600		Operation	Restart
						setting	takes
							effect
P00-10		rated power	0.01kW	1-65535		Operation	Restart
						setting	takes
							effect
P00-11		Maximum torque	0.01Nm	1-65535		Operation	Restart
						setting	takes
							effect
P00-12		maximum speed	rpm	1-12000		Operation	Restart
						setting	takes
							effect
P00-13		stator resistance	lmΩ	1-65535		Operation	Restart
						setting	takes
							effect
P00-14		Stator inductance Lq	0.01mH	1-65535		Operation	Restart
						setting	takes
							effect
P00-15		Stator inductance Ld	0.01mH	1-65535		Operation	Restart
						setting	takes

							effect
P00-16		Linear back emf coefficient	0.01mV/krp	1-65535		Operation	Restart
			m			setting	takes
							effect
P00-17		Electrical constant	0.01ms	1-65535		Operation	Restart
						setting	takes
							effect
P00-18		Mechanical constant	0.01ms	1-65535		Operation	Restart
						setting	takes
							effect
P00-19		Current gain percentage	%	10-500		Operation	Restart
						setting	takes
							effect
P00-20		Monitoring display when		0-100	100	Operation	Restart
		power is turned on.				setting	takes
							effect
P00-23		Slave station ID setting		1-255	one	Operation	be
						setting	effective
							immediatel
							у
	0	Baud rate selection of 485		0-7	2	Operation	be
		communication				setting	effective
							immediatel
P00-24							у
1 00-24	on	485 communication parity		0-3	one	Operation	be
	e	check mode				setting	effective
							immediatel
							у

P00-26		Modbus response delay	0.1ms	0-100	one		
P00-30		Brake resistance setting		0-2	one	Operation	be
						setting	effective
							immediatel
							у
P00-31		External braking resistance	1W	1-65535	40	Operation	be
		power				setting	effective
							immediatel
							у
P00-32		External braking resistance	0.1 Ω	1-65535	300	Operation	be
		value				setting	effective
							immediatel
							у
P00-33		Built-in braking resistor	1W	1-65535	40	Operation	be
		power				setting	effective
							immediatel
							у
P00-34		Built-in braking resistance	0.1 Ω	1-65535	four	Operation	be
		value			hundre	setting	effective
					d		immediatel
							у
P00-35		Resistance heat dissipation	1%	1-100	20	Operation	be
		coefficient				setting	effective
							immediatel
							у
	0	Three-phase power supply		0-1	0	Operation	Restart
P00-39		input selection				setting	takes
							effect

	on	Electrical signal shielding		0-1	0	Operation	Restart
	e	on RST				setting	takes
							effect
P00-40		Temperature compensation	degree	-20-20	0	Operation	be
		setting				setting	effective
							immediatel
							у
P00-41		Over temperature alarm	degree	0-150	100	Operation	be
		setting				setting	effective
							immediatel
							у
P00-42		Overtemperature warning	degree	0-150	100	Operation	be
		setting				setting	effective
							immediatel
							у
P00-43		Fan startup temperature	degree	0-150	60	Operation	be
		setting				setting	effective
							immediatel
							у
	0	Fan fault setting		0-1	0	Operation	Restart
						setting	takes
							effect
	on	Abnormal fault setting for		0-1	0	Operation	Restart
P00-44	e	communication with FPGA				setting	takes
		(E.052)					effect
	2	Regeneration abnormal		0-1	0	Operation	Restart
		alarm (E.430)				setting	takes
							effect

	thr	Soft start resistor overload		0-1	0	Operation	Restart
	ee	fault setting (E.435)				setting	takes
							effect
	0	DB overload fault setting		0-1	0	Operation	Restart
		(E.436)				setting	takes
							effect
	on	Fault Settings for Motor Out		0-1	0	Operation	Restart
	e	of Control Detection (E.421)				setting	takes
D00 46							effect
F00-40	2	U-phase current feedback		0-1	0	Operation	Restart
		abnormality (E.071)				setting	takes
							effect
	thr	W phase current feedback		0-1	0	Operation	Restart
	ee	abnormality (E.072)				setting	takes
							effect
	0	Setting of Off-line Fault of		0-1	0	Operation	Restart
		Motor Power Line (E.305)				setting	takes
D00 47							effect
P00-47	on	Abnormal fault setting of		0-1	0	Operation	Restart
	e	FPGA clock (E.069)				setting	takes
							effect
P00-50		Motor locked-rotor	ms	10-60000	500	Operation	be
		protection time				setting	effective
							immediatel
							у
P00-51		Overload warning value	%	0-100	100	Operation	be
						setting	effective
							immediatel

							у
P00-52		Undervoltage alarm voltage	V	10-500	one hu	Operation	Restart
		value			ndred a	setting	takes
					nd eigh		effect
					ty		
P00-55		Overload reference value	%	50-200	115	Operation	Restart
						setting	takes
							effect
P00-56		Motor overload time	%	10-100	100	Operation	Restart
		percentage				setting	takes
							effect
P00-80		Carrier setting		0-2	0	Operation	Restart
						setting	takes
							effect
P01-00	0	Direction of rotation		0-1	0	Operation	Restart
						setting	takes
							effect
P01-01	0	control model		0-6	0	Operation	Restart
						setting	takes
							effect
P01-02	0	Adjust selection		0-4	0	Operation	Restart
						setting	takes
							effect
P01-03		Stiffness grade		0-31	13	Operation	Restart
						setting	takes
							effect
P01-04		Load moment of inertia ratio	%	0-20000	300	Operation	be
						setting	effective

							immediatel
							у
	0	Mute adjustment selection		0-1	0	Operation	Restart
						setting	takes
							effect
	on	Self-adjusting type		0-2	0	Operation	Restart
P01-05	e					setting	takes
							effect
	2	Static current base gain		0-8	eight	Operation	Restart
						setting	takes
							effect
	0	Self-adjusting value		0-7	four	Operation	be
						setting	effective
							immediatel
D 01.06							у
F01-00	on	Self-adjusting load value		0-2	one	Operation	be
	e					setting	effective
							immediatel
							У
P01-10		Vibration detection selection		0-2	0	Operation	be
						setting	effective
							immediatel
							У
P01-11		Vibration detection	%	50-500	100	Operation	be
		sensitivity				setting	effective
							immediatel
							у
P01-12		Vibration detection level	rpm	0-5000	50	Operation	be

						setting	effective
							immediatel
							у
P01-13		Detection amplitude of	0.1%	1-3000	four	Operation	be
		residual vibration			hundre	setting	effective
					d		immediatel
							у
	0	Servo OFF and stop method		0-2	0	Operation	Restart
		in case of Gr.1 fault				setting	takes
							effect
	on	Stop method in case of Gr.2		0-2	0	Operation	Restart
	e	failure				setting	takes
D01.00							effect
P01-20	2	Stop method when		0-4	0	Operation	Restart
		overtravel.				setting	takes
							effect
	thr	Stop method in forced stop.		0-2	0	Operation	Restart
	ee					setting	takes
							effect
P01-21		Stop torque of deceleration	%	0-350	300	Operation	be
		in case of emergency stop,				setting	effective
		fault and over-travel.					immediatel
							у
P01-22		Slow down downtime in	ms	0-60000	0	Operation	be
		case of emergency stop,				setting	effective
		fault and over-travel.					immediatel
							у
P01-29		Delay from brake opening to	ms	0-500	100	Operation	be

	command reception				setting	effective
						immediatel
						у
P01-30	At rest, the brake is OFF	ms	0-500	100	Operation	be
	and the motor is not				setting	effective
	energized.					immediatel
						у
P01-31	Rotating state, speed	rpm	0-6000	100	Operation	be
	threshold when brake is				setting	effective
	OFF					immediatel
						у
P01-32	Rotation state, delay from	ms	0-1000	50	Operation	be
	servo OFF to brake OFF				setting	effective
						immediatel
						у
P01-35	Z signal level width	0.1ms	1-1000	50	Operation	be
					setting	effective
						immediatel
						у
P02-00	Position loop gain	0.1/s	10-20000	four	Operation	be
				hundre	setting	effective
				d		immediatel
						у
P02-01	Second position loop gain	0.1/s	10-20000	four	Operation	be
				hundre	setting	effective
				d		immediatel
						у
P02-03	Velocity feedforward gain	%	0-100	30	Operation	be

					setting	effective
						immediatel
						у
P02-04	Velocity feedforward	0.01ms	-6400	50	Operation	be
	filtering time				setting	effective
						immediatel
						у
P02-10	Velocity loop gain	0.1Hz	10-20000	four	Operation	be
				hundre	setting	effective
				d		immediatel
						у
P02-11	Velocity loop integration	0.01ms	15-51200	2000	Operation	be
	time parameter				setting	effective
						immediatel
						у
P02-13	Second speed loop gain	0.1Hz	10-20000	four	Operation	be
				hundre	setting	effective
				d		immediatel
						у
P02-14	The second speed loop	0.01ms	15-51200	51200	Operation	be
	integration time constant				setting	effective
						immediatel
						у
P02-19	Torque feedforward gain	%	-200	0	Operation	be
					setting	effective
						immediatel
						у
P02-20	Torque feedforward filtering	0.01ms	-6400	50	Operation	be

		time				setting	effective
							immediatel
							у
P02-21		Friction compensation gain	%	10-1000	100	Operation	be
						setting	effective
							immediatel
							у
P02-22		Second friction	%	10-1000	100	Operation	be
		compensation gain				setting	effective
							immediatel
							у
P02-23		Friction compensation	%	0-100	0	Operation	be
		coefficient				setting	effective
							immediatel
							у
P02-24		Friction compensation	0.1Hz	0-10000	0	Operation	be
		frequency compensation				setting	effective
							immediatel
							у
P02-25		Friction compensation gain	%	1-1000	100	Operation	be
		compensation				setting	effective
							immediatel
							у
	0	Gain switching setting		0-1	0	Operation	be
						setting	effective
P02-30							immediatel
							у
	on	Gain switching setting		0-9	five	Operation	be

	e					setting	effective
							immediatel
							у
P02-31		Gain switching time 1	ms	0-60000	100	Operation	be
						setting	effective
							immediatel
							у
P02-32		Gain switching time 2	ms	0-60000	eight	Operation	be
					hundre	setting	effective
					d		immediatel
							у
P02-33		Gain switching latency 1	ms	0-60000	1000	Operation	be
						setting	effective
							immediatel
							у
P02-34		Gain switching latency 2	ms	0-60000	100	Operation	be
						setting	effective
							immediatel
							у
P02-40	0	Mode switch function		0-4	0	Operation	be
		selection				setting	effective
							immediatel
							у
P02-41		Mode switch torque	1%	0-350	200	Operation	be
		command threshold				setting	effective
							immediatel
							У
P02-42		Mode switch speed	rpm	0-6000	0	Operation	be

	command threshold				setting	effective
						immediatel
						у
P02-43	Mode switch acceleration	1rpm/s	0-30000	0	Operation	be
	threshold				setting	effective
						immediatel
						у
P02-44	Mode switch position	Instruction	0-10000	0	Operation	be
	deviation threshold	unit			setting	effective
						immediatel
						у
P02-50	Torque command added	%	-100-100	0	Operation	be
	value				setting	effective
						immediatel
						у
P02-51	Positive torque	%	0-100	0	Operation	be
	compensation value				setting	effective
						immediatel
						у
P02-52	Negative direction torque	%	0100	0	Operation	be
	compensation value				setting	effective
						immediatel
						у
P02-53	Viscous friction	%	0-100	0	Operation	be
	compensation value				setting	effective
						immediatel
						у
P02-57	Low frequency vibration		0-1	0	Operation	be

		suppression setting				setting	effective
							immediatel
							у
P02-58		Low frequency vibration	0.1Hz	10-2000	eight	Operation	be
		frequency 1			hundre	setting	effective
					d		immediatel
							у
P02-59		Low frequency resonance	%	10-1000	100	Operation	be
		setting 1				setting	effective
							immediatel
							у
	0	Model tracking control		0-1	0	Operation	be
		selection				setting	effective
							immediatel
D 0 2 (0							у
P02-60	on	Vibration suppression		0-1	0	Operation	be
	e	selection				setting	effective
							immediatel
							у
P02-61		Model tracking control gain	0.1/s	10-20000	500	Operation	be
						setting	effective
							immediatel
							у
P02-62		Gain compensation of	0.1%	500-2000	1000	Operation	be
		model tracking control				setting	effective
							immediatel
							у
P02-63		Model tracking control bias	0.1%	0-10000	1000	Operation	be

	(forward direction)				setting	effective
						immediatel
						у
P02-64	Model Tracking Control	0.1%	0-10000	1000	Operation	be
	Bias (Reverse Direction)				setting	effective
						immediatel
						у
P02-65	Vibration suppression 1	0.1Hz	10-2500	500	Operation	be
	frequency a				setting	effective
						immediatel
						у
P02-66	Vibration suppression 1	0.1Hz	10-2500	700	Operation	be
	frequency b				setting	effective
						immediatel
						у
P02-67	Model tracking control	0.1%	0-10000	1000	Operation	be
	speed feedforward				setting	effective
	compensation					immediatel
						у
P02-68	Second model tracking	0.1/s	10-20000	500	Operation	be
	control gain				setting	effective
						immediatel
						у
P02-69	Gain compensation of	0.1%	500-2000	1000	Operation	be
	second model tracking				setting	effective
	control					immediatel
						у
P02-70	Speed vibration suppression		0-0x1121	0x0010	Operation	be

	setting				setting	effective
						immediatel
						у
P02-71	Velocity vibration	0.1Hz	10-20000	1000	Operation	be
	suppression frequency				setting	effective
						immediatel
						у
P02-72	Speed vibration suppression	0.1Hz	10-20000	1000	Operation	be
	frequency 2				setting	effective
						immediatel
						у
P02-73	Speed vibration suppression	%	1-1000	100	Operation	be
	gain compensation				setting	effective
						immediatel
						у
P02-74	Velocity damping	%	0-300	100	Operation	be
	attenuation gain				setting	effective
						immediatel
						у
P02-75	Velocity damping	%	0-300	100	Operation	be
	attenuation gain 2				setting	effective
						immediatel
						у
P02-76	Time parameter 1	0.01ms	0-1000	0	Operation	be
	compensation of speed				setting	effective
	vibration suppression filter					immediatel
						у
P02-77	Time parameter 2	0.01ms	0-1000	0	Operation	be

		compensation of speed				setting	effective
		vibration suppression filter					immediatel
							у
P02-88		Current control gain value	%	20-500	100	Operation	be
						setting	effective
							immediatel
							у
P03-00	0	Position instruction setting		0-4	0	Operation	Restart
						setting	takes
							effect
	0	Command pulse shape		0-3	one	Operation	Restart
P03-01						setting	takes
							effect
	0	Over-travel signal		0-1	0	Operation	be
D02.02		eliminates residual position				setting	effective
P03-02		deviation.					immediatel
							у
	0	Position instruction reversal		0-1	0	Operation	Restart
						setting	takes
DO2 02							effect
P03-03	on	Inversion of effective level		0-1	0	Operation	Restart
	e	of instruction pulse				setting	takes
							effect
P03-04		Instruction pulse filtering		0-2000	0	Operation	be
						setting	effective
							immediatel
							у
P03-05		Positioning completion		0-2	0	Operation	be

	output condition				setting	effective
						immediatel
						у
P03-06	Positioning completion	Instruction	0-65535	seven	Operation	be
	threshold	unit			setting	effective
						immediatel
						у
P03-07	Positioning approach	Instruction	0-65535	60000	Operation	be
	threshold	unit			setting	effective
						immediatel
						у
P03-09	Number of position		0-107374182	ten	Operation	Restart
	instructions for one rotation		3	thousan	setting	takes
	of the motor			d		effect
P03-15	Alarm value of excessive	Instruction	0-107374182	90000	Operation	be
	position deviation	unit	3		setting	effective
						immediatel
						у
P03-17	Average moving time of	0.1ms	0-10000	0	Operation	be
	position command				setting	effective
						immediatel
						у
P03-18	Time parameter of	0.1ms	0-65535	0	Operation	be
	first-order low-pass filtering				setting	effective
	for position instruction					immediatel
						у
P03-23	Denominator of frequency		0-107374182	0	Operation	be
	division output pulse		3		setting	effective

		number					immediatel
							у
P03-25		Frequency division output		1-65535	2500	Stop	Restart
		pulse number				setting	takes
							effect
P03-26	0	Frequency division output		0-1	0	Stop	Restart
		pulse phase sequence				setting	takes
		inversion					effect
P03-30		Warning value of excessive	%	10-100	100	Operation	be
		position deviation				setting	effective
							immediatel
							у
P03-31		Alarm value of servo ON	Instruction	0-107374182	90000	Operation	be
		position deviation is too	unit	3		setting	effective
		large					immediatel
							у
P03-33		Warning value of excessive	%	10-100	100	Operation	be
		servo ON position deviation				setting	effective
							immediatel
							у
P03-34		Overshoot detection value	%	0-100	100	Operation	be
						setting	effective
							immediatel
							у
P03-40		Electronic gear molecule 1		1-107374182	64	Stop	Restart
				3		setting	takes
							effect
P03-42		Denominator 1 of electronic		1-107374182	one	Stop	Restart

		gear		3		setting	takes
							effect
P03-44		Electronic gear molecule 2		1-107374182	64	Stop	Restart
				3		setting	takes
							effect
P03-46		Electronic gear denominator		1-107374182	one	Stop	Restart
		2		3		setting	takes
							effect
P04-00	0	Speed command selection		0-5	0	Stop	Restart
		setting				setting	takes
							effect
P04-01		JOG speed command set	rpm	0-6000	0	Operation	be
		value				setting	effective
							immediatel
							у
P04-02		Speed command digital	rpm	-6000-6000	0	Operation	be
		setting value				setting	effective
							immediatel
							у
P04-04		Zero-speed clamping speed	rpm	0-6000	30	Operation	be
		threshold				setting	effective
							immediatel
							у
P04-05		Overspeed threshold	rpm	0-6300	6300	Operation	be
						setting	effective
							immediatel
							у
P04-06		Forward speed limit	rpm	0-6300	6000	Operation	be

					setting	effective
						immediatel
						у
P04-07	Reverse speed limit	rpm	-6000-0	-6000	Operation	be
					setting	effective
						immediatel
						у
P04-10	Zero speed detection value	rpm	0-2000	30	Operation	be
					setting	effective
						immediatel
						у
P04-11	Motor rotation detected	rpm	0-2000	20	Operation	be
	speed value				setting	effective
						immediatel
						У
P04-12	Speed reaches signal	rpm	0-2000	30	Operation	be
	threshold				setting	effective
						immediatel
						у
P04-14	Speed command	ms	0-10000	0	Operation	be
	acceleration time				setting	effective
						immediatel
						у
P04-15	Speed command	ms	0-10000	0	Operation	be
	deceleration time				setting	effective
						immediatel
						у
P04-30	Internal set speed 1	rpm	-6000-6000	0	Operation	be

					setting	effective
						immediatel
						у
P04-31	Internal set speed 2	rpm	-6000-6000	0	Operation	be
					setting	effective
						immediatel
						у
P04-32	Internal set speed 3	rpm	-6000-6000	0	Operation	be
					setting	effective
						immediatel
						у
P04-33	Internal set speed 4	rpm	-6000-6000	0	Operation	be
					setting	effective
						immediatel
						у
P04-34	Internal set speed 5	rpm	-6000-6000	0	Operation	be
					setting	effective
						immediatel
						у
P04-35	Internal set speed 6	rpm	-6000-6000	0	Operation	be
					setting	effective
						immediatel
						у
P04-36	Internal set speed 7	rpm	-6000-6000	0	Operation	be
					setting	effective
						immediatel
						у
P04-37	Internal set speed 8	rpm	-6000-6000	0	Operation	be

						setting	effective
							immediatel
							у
P05-00	0	Torque command selection		0-5	0	Stop	Restart
		setting				setting	takes
							effect
P05-01		Torque control speed limit		0-3	one	Operation	be
		source setting				setting	effective
							immediatel
							у
P05-02		Torque control speed limit	rpm	0-6000	1000	Operation	be
		value				setting	effective
							immediatel
							у
P05-03		Torque command digital set	%	-300-300	0	Operation	be
		value				setting	effective
							immediatel
							у
P05-05		Torque limiting source		0-3	0	Operation	be
		setting				setting	effective
							immediatel
							у
P05-06		Output delay of torque limit	ms	0-10000	0	Operation	be
		detection signal				setting	effective
							immediatel
							у
P05-10		Positive internal torque limit	%	0-350	200	Operation	be
						setting	effective

						immediatel
						у
P05-11	Anti-internal torque	%	-350-0	-200	Operation	be
	limitation				setting	effective
						immediatel
						у
P05-12	Positive external torque	%	0-350	200	Operation	be
	limit				setting	effective
						immediatel
						у
P05-13	Anti-external torque	%	-350-0	-200	Operation	be
	limitation				setting	effective
						immediatel
						у
P05-14	Internal set torque 1	%	-300-300	0	Operation	be
					setting	effective
						immediatel
						у
P05-15	Internal set torque 2	%	-300-300	0	Operation	be
					setting	effective
						immediatel
						у
P05-16	Internal set torque 3	%	-300-300	0	Operation	be
					setting	effective
						immediatel
						у
P05-17	Internal set torque 4	%	-300-300	0	Operation	be
					setting	effective

							immediatel
							у
P06-00		Effective DI function		0-n.FFFF	0	Operation	Restart
		allocation at power-on 1				setting	takes
							effect
P06-01		Effective DI function			0	Operation	Restart
		allocation at power-on 2				setting	takes
							effect
	0	Speed simulation instruction se	election	0-1	0	Operation	Restart
						setting	takes
D 06.05							effect
P06-05	on	Torque simulation instruction	selection	0-1	0	Operation	Restart
	e					setting	takes
							effect
	01	DI1 Terminal Settings-Functio	n Selection	00-1E	01	Operation	Restart
						setting	takes
P06 11							effect
100-11	2	DI1 Terminal Settings-Logic S	Selection	0-4	one	Operation	Restart
						setting	takes
							effect
	01	DI2 Terminal Settings-Functio	n Selection	00-1E	02	Operation	Restart
						setting	takes
P06 12							effect
100-12	2	DI2 Terminal Settings-Logic S	Selection	0-4	2	Operation	Restart
						setting	takes
							effect
D06 12	01	DI3 Terminal Settings-Function	on Selection	00-1E	03	Operation	Restart
FU0-13						setting	takes

						effect
	2	DI3 Terminal Settings-Logic Selection	0-4	one	Operation	Restart
					setting	takes
						effect
	01	DI4 Terminal Settings-Function Selection	00-1E	04	Operation	Restart
					setting	takes
P06-14						effect
100-14	2	DI4 Terminal Settings-Logic Selection	0-4	one	Operation	Restart
					setting	takes
						effect
	01	DI5 Terminal Settings-Function Selection	00-1E	07	Operation	Restart
					setting	takes
P06-15						effect
100-15	2	DI5 Terminal Settings-Logic Selection	0-4	one	Operation	Restart
					setting	takes
						effect
	01	DO1 Terminal Settings-Function Selection	00-13	03	Operation	Restart
					setting	takes
P06-21						effect
100 21	2	DO1 Terminal Settings-Logic Selection	0-1	one	Operation	Restart
					setting	takes
						effect
	01	DO2 Terminal Settings-Function Selection	00-13	02	Operation	Restart
					setting	takes
P06-22						effect
100-22	2	DO2 terminal setting-logic selection	0-1	one	Operation	Restart
					setting	takes
						effect

	01	DO3 Terminal Settings-Functi	on Selection	00-13	01	Operation	Restart
						setting	takes
DOC 22							effect
P00-23	2	DO3 terminal setting-logic sel	ection	0-1	one	Operation	Restart
						setting	takes
							effect
	01	DO4 Terminal Settings-Functi	on Selection	00-13	04	Operation	Restart
						setting	takes
D06.24							effect
P06-24	2	DO4 Terminal Settings-Logic	Selection	0-1	one	Operation	Restart
						setting	takes
							effect
P06-40		Speed value corresponding	rpm	0-2000	300	Stop	be
		to analog 1V				setting	effective
							immediatel
							у
P06-41		AI1 filtering time constant	0.01ms	0-2500	10	Operation	be
						setting	effective
							immediatel
							у
P06-42		AI1 bias	mV	-9999-9999	0	Operation	be
						setting	effective
							immediatel
							у
P06-43		Torque value corresponding	%	0-100	10	Stop	be
		to analog 1V				setting	effective
							immediatel
							у

P06-46		AI1 dead zone	mV	0-9999	0	Operation	be
						setting	effective
							immediatel
							у
P08-00	0	Offline inertia identification		0-n.xxx1	0	Operation	be
		mode				setting	effective
							immediatel
							У
	on	On-line inertia identification		0-n.xx1x		Operation	be
	e	mode				setting	effective
							immediatel
							у
P08-01		Inertia identification inertia	1%	0-20000	300	Operation	be
		initial value				setting	effective
							immediatel
							у
P08-02		Inertia identification running	0.1 lap	5-1000	30	Operation	be
		laps				setting	effective
							immediatel
							у
P08-03		Maximum speed of inertia	rpm	10-2000	eight	Operation	be
		identification			hundre	setting	effective
					d		immediatel
							у
P08-04		Acceleration time of inertia	ms	20-800	100	Operation	be
		identification				setting	effective
							immediatel
							у

P08-05	Waiting time after single	ms	50-10000	1000	Operation	be
	inertia identification is				setting	effective
	completed					immediatel
	1					v
P08.06	 Program IOG mode		0.5	0	Operation	, ha
108-00	r togram 500 mode		0-5	0	u.	
					setting	effective
						ımmediatel
						у
P08-07	Program JOG moving	0.1 lap	1-2000	30	Operation	be
	distance				setting	effective
						immediatel
						У
P08-09	Program JOG moving speed	rpm	1-10000	500	Operation	be
					setting	effective
						immediatel
						у
P08-10	Program JOG acceleration	ms	2-10000	100	Operation	be
	and deceleration time				setting	effective
						immediatel
						v
P08-11	Program JOG waiting time	ms	0-10000	100	Operation	be
					setting	effective
					setting	incurse disets1
						immediatei
						у
P08-12	Program JOG movement	time	0-10000	one	Operation	be
	times				setting	effective
						immediatel
						у
0755-26509689

	0	Automatically adjust inertia		0-n.xxx1	one	Operation	be
		setting				setting	effective
							immediatel
D09.15							у
P08-15	on	Automatic adjustment mode		0-n.xx3x	three	Operation	be
	e	setting				setting	effective
							immediatel
							у
P08-16		Automatically adjust the	0.1Hz	100-7000	3000	Operation	be
		maximum gain				setting	effective
							immediatel
							у
P08-17		Velocity observer gain	Hz	10-500	500	Operation	be
						setting	effective
							immediatel
							у
P08-18		Velocity observer	%	0-500	150	Operation	be
		coefficient				setting	effective
							immediatel
							у
P08-20		Time parameters of the first	0.01ms	0-2500	100	Operation	be
		torque command filter in the				setting	effective
		first paragraph					immediatel
							У
P08-21		Time parameters of the	0.01ms	0-2500	100	Operation	be
		second torque command				setting	effective
		filter in the first paragraph					immediatel
							у

0755-26509689

P08-22		The second torque in the	Hz	100-5000	5000	Operation	be
		second paragraph				setting	effective
		commands the filter					immediatel
		frequency.					у
P08-23		Q value of the second torque	0.01ms	50-100	50	Operation	be
		command filter in the				setting	effective
		second paragraph					immediatel
							у
	0	First notch filter selection		0-1	one	Operation	be
						setting	effective
							immediatel
							у
	on	Second notch filter selection		0-1	one	Operation	be
D00.24	e					setting	effective
P08-24							immediatel
							у
	thr	Selection of friction		0-1	one	Operation	be
	ee	compensation function				setting	effective
							immediatel
							у
	0	Adaptive notch filter 1 mode		0-1	one	Operation	be
		setting				setting	effective
							immediatel
D09 25							у
P08-25	on	Adaptive notch filter 2 mode		0-1	one	Operation	be
	e	setting				setting	effective
							immediatel
							у

0755-26509689

P08-30	Paragraph 1 trap frequency	Hz	50-5000	5000	Operation	be
					setting	effective
						immediatel
						у
P08-31	Width of the first notch	0.01	50-1000	70	Operation	be
	filter				setting	effective
						immediatel
						у
P08-32	Depth of the first notch filter	0.001	0-1000	0	Operation	be
					setting	effective
						immediatel
						у
P08-33	Paragraph 2 trap frequency	Hz	50-5000	5000	Operation	be
					setting	effective
						immediatel
						у
P08-34	Width of the second notch	0.01	50-1000	70	Operation	be
	filter				setting	effective
						immediatel
						у
P08-35	Section 2 trap depth	0.001	0-1000	0	Operation	be
					setting	effective
						immediatel
						у
P08-36	Paragraph 3 trap frequency	Hz	50-5000	5000	Operation	be
					setting	effective
						immediatel
						у

P08-37	Width of the third notch	0.01	50-1000	70	Operation	be
	filter				setting	effective
						immediatel
						у
P08-38	Depth of the third notch	0.001	0-1000	0	Operation	be
	filter				setting	effective
						immediatel
						у
P08-51	Sweep torque amplitude	%	1-300	15	Operation	be
					setting	effective
						immediatel
						у

Note:

1:The tag identifiers0, 1, 2 and3 represent the tag of the current parameter code value, and the tag sequence is3210; the tag without value represents the entire parameter value
2:Most of the factory values in the parameter table are the same, but some A/B axes are different from each other.
Use/to distinguish between A and B axes. The value before/represents the factory of A axis, and the value after/represents the factory of B axis.

8.2 Parameter Description

Parameter Code	Bit Number	Name	Unit	Parameter Range	Default Setting	Setting Method
P00-07	0	Encoder (Type)		0-1	1	Running & setting
	1	Encoder (Disable overheat alarm)		0-1	1	Running & setting
	2	Encoder (Disable multi-turn alarm)		0-1	1	Running & setting
	3	Encoder (Disable battery alarm)		0-1	1	Running & setting

Note: As shown in the above figure, the red box indicates the tag number identification of the parameter,

where 0, 1, 2 and 3 represent the tag number of the current parameter value, and the tag number sequence is 3210

8.2.1 P00-xx motor and driver parameters

Param Name Code		Name	Note:	
			Factory set, no need to set	
T			0: P00-00 to P00-19 active	
P00-00		Motor No.	2000: Absolute encoder motor, P00-01 to P00-19 are automatically	
			recognized by the drive	
D00.01			Setting range: 1-6000, unit: rpm	
P00-01		Rated speed of motor	Factory set, no need to set	
			Setting range: 1-65535, unit: 0.01N.M	
P00-02		Rated torque of motor	According to the setting of the distribution machine, it has been set at the	
			factory	
		Rated current of	Setting range: 1-65535, unit: 0.01A	
P00-03		Rated current of	According to the setting of the distribution machine, it has been set at the	
		motor	factory	
		Motor moment of	Setting range: 1-65535, unit: 0.01 kg.cm ²	
P00-04		· ·	According to the setting of the distribution machine, it has been set at the	
		inertia	factory	
		Number of pole pairs	Setting range: 1-31, unit: antipode	
P00-05			According to the setting of the distribution machine, it has been set at the	
			factory	
			Setting range: 0-1	
	0	Encoder-Type	0: incremental encoder;	
			1: absolute value encoder;	
		Encoder-Overheat	Setting range: 0-1	
	1	Al	0: Turn on the overheat alarm	
P00-07		Alarm	1: Turn off overheat alarm	
		Encoder-Multiturn	Setting range: 0-1	
	2		0: Turn on multi-turn alarm (multi-turn absolute encoder)	
		Alarm	1: Turn off multi-turn alarm (single-turn absolute encoder)	
	2	Encoder Pattery	Setting range: 0-1	
		Encoder-Battery	0: Battery alarm on (multiturn absolute encoder)	

	Alarm	1: Turn off battery alarm (single-turn absolute encoder)
P00-08	encoder zero offset	Setting range: 0-360° According to the setting of the distribution machine, it has been set at the
		factory
P00-09	Rated voltage	According to the setting of the distribution machine, it has been set at the factory
P00-10	rated power	According to the setting of the distribution machine, it has been set at the factory
P00-11	maximum torque	According to the setting of the distribution machine, it has been set at the factory
P00-12	maximum speed	According to the setting of the distribution machine, it has been set at the factory
P00-13	stator resistance	According to the setting of the distribution machine, it has been set at the factory
P00-14	stator inductance Lq	According to the setting of the distribution machine, it has been set at the factory
P00-15	Stator inductance Ld	According to the setting of the distribution machine, it has been set at the factory
P00-16	linear back EMF coefficient	According to the setting of the distribution machine, it has been set at the factory
P00-17	electrical constant	According to the setting of the distribution machine, it has been set at the factory
P00-18	mechanical constant	According to the setting of the distribution machine, it has been set at the factory
P00-19	Current gain	According to the setting of the distribution machine, it has been set at the
	percentage	factory
		Setting range:0-100, default 100
		Set according to customer display requirements
P00-20	Power-on interface	When set to 100, the drive displays the operational status when it powers
	display setting	up The set value of other recomptors shall be set according to the errich
		number of the monitoring item list (Chapter 8.3

			For example, when the customer needs to drive and display the motor
			speed d08.F.SP at power-on, the parameter is set to 8
D 00 00			Setting range: 0-255, default 1
P00-23 Slave ID setting		Slave ID setting	Slave ID setting during Modbus communication
			Setting range: 0-7, default 2
			0:2400
			1:4800
		Modbus	2:9600
	0	communication baud	3:19200
D00 24		rate	4:38400
P00-24		Tute	5:57600
			6:115200
			7:256000
			Set range 0-3, default 0
		485 communication	0: no check, 2 stop bits
P00-24	1		1: even parity, 1 stop bit
100-24		parity check mode	2: Odd parity, 1 stop bit
			3: No check, 1 stop bit
			Setting range: 0-100, unit. 01 mS. Default 0
		Modbus	Setting range: 0-100, unit. 01 mS o Default 0 When the parameter is set to 0, the response is made according to the
P00-26		Modbus communication	Setting range: 0-100, unit. 01 mS _o Default 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the
P00-26		Modbus communication response delay	Setting range: 0-100, unit. 01 mS _o Default 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set
P00-26		Modbus communication response delay	Setting range: 0-100, unit. 01 mS o Default 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time
P00-26		Modbus communication response delay	Setting range: 0-100, unit. 01 mS _o Default 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2
P00-26		Modbus communication response delay Braking resistor	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used
P00-26		Modbus communication response delay Braking resistor setting	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor
P00-26		Modbus communication response delay Braking resistor setting	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor
P00-26 P00-30		Modbus communication response delay Braking resistor setting	Setting range: 0-100, unit. 01 mS _o Default 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor Setting range: 1-65535, unit: 1W
P00-26 P00-30 P00-31		Modbus communication response delay Braking resistor setting Power of external	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor Setting range: 1-65535, unit: 1W Set correctly according to the external braking resistance power, such as:
P00-26 P00-30 P00-31		Modbus communication response delay Braking resistor setting Power of external braking resistor	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor Setting range: 1-65535, unit: 1W Set correctly according to the external braking resistance power, such as: Set to 40, resistor power is 40W
P00-26 P00-30 P00-31		Modbus communication response delay Braking resistor setting Power of external braking resistor Resistance value of	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor Setting range: 1-65535, unit: 1W Set correctly according to the external braking resistance power, such as: Set to 40, resistor power is 40W Setting range: 1-65535, unit: 0.1 ohm
P00-26 P00-30 P00-31 P00-32		Modbus communication response delay Braking resistor setting Power of external braking resistor Resistance value of external braking	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor Setting range: 1-65535, unit: 1W Set correctly according to the external braking resistance power, such as: Set to 40, resistor power is 40W Setting range: 1-65535, unit: 0.1 ohm Set correctly according to the resistance value of the external braking
P00-26 P00-30 P00-31 P00-32		Modbus communication response delay Braking resistor setting Power of external braking resistor Resistance value of external braking resistor	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor Setting range: 1-65535, unit: 1W Set correctly according to the external braking resistance power, such as: Set to 40, resistor power is 40W Setting range: 1-65535, unit: 0.1 ohm Set correctly according to the resistance value of the external braking resistor
P00-26 P00-30 P00-31 P00-32		Modbus communication response delay Braking resistor setting Power of external braking resistor Resistance value of external braking resistor	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor Setting range: 1-65535, unit: 1W Set correctly according to the external braking resistance power, such as: Set to 40, resistor power is 40W Setting range: 1-65535, unit: 0.1 ohm Set correctly according to the resistance value of the external braking resistor Setting range: 1-65535, unit: 1W
P00-26 P00-30 P00-31 P00-32 P00-33		Modbus communication response delay Braking resistor setting Power of external braking resistor Resistance value of external braking resistor Built-in braking	Setting range: 0-100, unit. 01 mS befault 0 When the parameter is set to 0, the response is made according to the standard communication. When the parameter is set to have a value, the response time of Modbus communication is made according to the set time Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor Setting range: 1-65535, unit: 1W Set correctly according to the external braking resistance power, such as: Set to 40, resistor power is 40W Setting range: 1-65535, unit: 0.1 ohm Set correctly according to the resistance value of the external braking resistor Setting range: 1-65535, unit: 1W Set correctly according to the resistance value of the external braking resistor Setting range: 1-65535, unit: 1W Set the correct power according to the built-in braking resistor, e.g.: Set to

P00.34		Resistance of built-in	Setting range: 1-65535, unit: 0.1 ohm		
P00-34		braking resistor	Set correctly according to the value of the built-in braking resistor		
			Setting range: 1-100, unit: %		
		heat dissipation	Set reasonably according to the heat dissipation conditions of the resistor.		
P00-35		coefficient of	If the heat dissipation conditions are good, the value can be set		
100-35		coefficient of	appropriately. When the setting value is large, the allowable energy of		
		resistance	resistor regeneration increases, and it is not easy to report regeneration		
			overload.		
			Setting range: 0-1		
	0	Three-phase power	0: Single power input		
		input selection	1: Three-phase power input (phase loss alarm AL400 will be generated		
D00 20			when phase loss occurs)		
P00-39		Flootwicel cignel	Setting range: 0-1		
	1	Electrical signal	0: power-on judgment signal for normal use		
		shielding on RST	1: shield power-on signal		
		Temperature	Setting range: -20-20, unit: degree centigrade		
P00-40		Compensation	Correction of deviation of d24.Ath from actual temperature by parameter		
		Settings	value		
D00 41		Overtemperature	Setting range: 1-150, unit: degree centigrade		
P00-41		alarm setting	Alarm when radiator temperature reaches set value E.440		
P00-42		Overtemperature	Setting range: 1-150, unit: degree centigrade		
100 12		warning setting	Overtemperature warning when radiator temperature reaches set value		
P00-43		Fan startup	Setting range: 1-150, unit: degree centigrade		
100-45		temperature setting	The fan starts when the radiator temperature reaches the set value		
			Setting range: 0-1		
	0	Fan Fault Settings	0: Close fault		
			1: Fault allowed		
		Communication with	Setting range: 0.1		
	1	FPGA abnormal fault	0. Close fault		
P00-44			1: Fault allowed		
		setting (E.052)			
		Regeneration	Setting range: 0-1		
	2	abnormal alarm	0: Close fault		
	1				

	3	Soft start resistor overload fault setting (E.435)	Setting range: 0-1 0: Close fault 1: Fault allowed
P00-46	0	DB overload fault setting (E.436)	Setting range: 0-1 0: Close fault 1: Fault allowed
	1	Motor runaway detection fault setting (E.421)	Setting range: 0-1 0: Close fault 1: Fault allowed
	2	Abnormal u-phase current feedback (E.071)	Setting range: 0-1 0: Close fault 1: Fault allowed
	3	Abnormal w-phase current feedback (E.072)	Setting range: 0-1 0: Close fault 1: Fault allowed
P00-47	0	Motor power line off line fault setting (E.305)	Setting range: 0-1 0: Close fault 1: Fault allowed
	1	FPGA clock exception fault setting (E.069)	Setting range: 0-1 0: Close fault 1: Fault allowed
P00-50		Motor locked-rotor protection time	Setting range: 0-60000Unit: ms Set the time to trigger the AL410 alarm protection formotor locked-rotor
P00-51		overload warning value	Setting range: 0-100Unit: % Set the overload warning threshold as a percentage of the overload warning time. When 60% is set, overload alarm is triggered when overload accumulation reaches 60% of overload alarm.
P00-52		Undervoltage alarm voltage value	Setting range: 0-500 units: V Setundervoltage alarm threshold

P00-55	overload reference value	Setting range: 50-200 units: % Set the initial threshold of the overload alarm curve, and when it is lower than the reference value, the motor can run for a long time without triggering the overload alarm.
P00-56	Motor overload time percentage	Setting range: 10-100 units: % Set overload protection time curve percentage

8.2.2 P01-xx Main Control Parameters

Param	NY.	NL /			
Code	Name	Note:			
P01-00	direction of rotation	Setting range: 0-1 0: counterclockwise is positive direction 1: Clockwise is positive direction			
P01-01	Control mode setting	Setting range: 0-5 0: Position control mode 1: Speed control mode 2: Torque control mode 3: Speed and torque cont input ports in CN1, set th to 5 (control mode switch controlling the logic state terminal logic effective invalid 4: Position and speed con input ports in CN1, set th to 5 (control mode switch	rol mode. To switch usir ne selected DI port input hing). The control mode e of the port. control mode velocity mode torque mode ntrol mode. To switch us ne selected DI port input hing). The control mode	ng one of the external port function selection can be switched by ing one of the external port function selection can be switched by	

		controlling the logic state of the port.					
		terminal logic	control mode				
		effective	location mode				
		invalid	velocity mode				
		5: Position and torque co	ntrol mode. To switch us	sing one of the external			
		input ports in CN1, set the selected DI portinput port function selection					
		to 5 (control mode switching). The control mode can be switched by					
		controlling the logic state of the port.					
		terminal logic	control mode				
		effective	location mode				
		invalid	torque mode				
		Setting range: 0-4					
		0: Manually adjust the rigidity.					
		1: Standard mode automatically adjusts rigidity. In this mode, parameters					
		P02-00, P02-01, P02-10, P02-11, P02-13, P02-14 and P08-20 will be					
		automatically set according to the rigidity level set in P01-03, and manual					
		adjustment of these parameters will not work. The following parameters					
	B 14	are set by the user:					
		P02-03 (speed feedforward gain), P02-04 (speed feedforward smoothing					
		constant).					
D01.02	Real-time	2: Positioning mode automatically adjusts rigidity. In this mode,					
P01-02	automatic adjustment mode	parameters P02-00, P02-01, P02 - 10, P02-11, P02-13, P02-14 and P08-20					
		will be automatically set according to the rigidity level set in P01-03, and					
		manual adjustment of these parameters will not work. The following					
		parameters will be fixed and cannot be changed:					
		P02-03 (speed feedforwa	rd gain): 30.0%				
		P02-04 (speed feedforwa	rd smoothing constant):	0.50			
		3: Automatically adjust r	igidity 2. In this mode, p	arameters P02-00,			
		P02-01, P02-10, P02-11, P02-13 will be automatically set according to the					
		rigidity level set in P01-03.					
		The following parameters are set by the user: P02-03 (speed feedforward					

			gain), P02-14 (speed integral constant 2), P08-20 (torque command filter		
			constant 1), P08-21 (torque command filter constant 2)		
			4: Automatic adjustment, depending on parameters P01-05, P01-06		
Real-time		Real-time	Setting range:0-31		
		automatic	Built-in 32 kinds of gain parameters, when P01-02 is set to 1, 2, 3 when the		
P01-03		adjustment of	effect. Can be directly called according to the actual situation, the larger		
		stiffness settings	the set value, the stronger the rigidity.		
			Setting range:0-20000, unit: 1%		
			Set the load inertia ratio of the corresponding motor as follows:		
P01-04		ratio of moment of	P01-04= load inertia/motor moment of inertia		
		inertia	For this inertia ratio, use the value after F19.J-L automatic inertia		
			identification, and write the identified value into the parameter		
		Mute adjustment	Setting range:0-1		
	0	selection	0: Turn offmute adjustment		
			1: Turn onmute adjustment		
P01-05		Quiescent Current	Setting range:0-8		
	2		The smaller the value, the smaller the current gain at low loads. 0:		
		Base Gain	corresponds to 20%, 8 corresponds to 100%.		
			Setting range:0-7		
P01-06	0	self-adjusting value	it work when P01-02 is set to 4, that higher the value, the more		
			rigid it is.		
		Self-adjusting load	Setting range 0-2 when P01-0-2 is set to 4 it will take effect		
P01-06	1	value	The larger the value, the more the model loads		
		1711 - 1	Setting range:0-2		
P01-10	Vibration detection	0: No vibration detection (E.S20 alarm off)			
		selection	1: Warning after vibration detection (close A. 911 Warning		
			2: Alarm after vibration detection		
P01-11		Vibration detection	Setting range:50-500, unit: %		
		sensitivity	Percentage based on P02-52		
P01-12		Vibration detection	Setting range: 0-5000 Unit: rpm		
101-12		level	Vibration detection level base		

DOI 12		Residual vibration	Setting range: 1-3000 Unit: 0.1%			
P01-13		detection amplitude	Based on the positioning completion threshold			
			Setting range: 0-2 It is necessary to confirm whether the driver			
		Servo OFF and	has DB hardware circuit			
	0	stop method when	0: Stop the motor by DB, then hold DB.			
		Gr.1 fault occurs	1: Stop the motor through DB, then release DB.			
			2: Do not use DB, stop freely			
			0: Use the settings in P01- 20.nX.			
		Stopping method in	1: Set the torque to decelerate and shut down according to P01-21, and then			
	1	area of Gr 2 foult	follow the setting in P01- 20.nX after shutdown.			
		case of GL2 laun	2: Decelerate and shut down according to P01-22 deceleration time, and			
P01-20			then follow the setting in P01- 20.nX			
			0: Use the settings in P01- 20.nX.			
		Stopping method in case of overtravel	1: Set the torque according to P01-21 to decelerate and stop, and lock the			
			servo after stopping.			
			2: Set the torque according to P01-21 to decelerate and shut down, and			
	2		enter the free running state after shutdown.			
			3: Stop the machine according to the deceleration time of P01-22, and lock			
P01-20			the servo after the machine is stopped.			
			4: Decelerate and shut down according to the deceleration time of P01-22,			
			and enter into free running state after shutdown			
			0: Use the settings in P01- 20.nX.			
		Stop method when	1: Set the torque to decelerate the shutdown according to P01-21, and use			
	3	forced stop	the setting in P01- 20.nX after shutdown.			
		loreed stop	2: Decelerate and stop according to P01-22 Deceleration Time, and use the			
			setting in P01- 20.nX after stopping.			
		Stop torque at	Setting range: (1-350 Unit: %			
P01-21		emergency stop,	Set the deceleration ston torque in case of emergency ston fault and			
		fault and over	overtravel			
		travel				
P01-22		E-stop, fault,	Setting range:0-60000 Unit: ms			

	deceleration	E-stop, fault, deceleration shutdown time in case of overtravel			
	shutdown time in				
	case of overtravel				
P01-29	Brake open to command reception delay	Setting range:0-500 Unit: ms Delay time from brake opening to command reception			
		Setting range:0-500 Unit: ms			
	Static state, delay	Enable On: After the enable command is executed, the driver will receive			
D01.00	from brake OFF to	the position command after P01-30.			
P01-30	motor	Enable off: when the motor is in static state, the time from the closing of the contracting brake to the non-energized state of the motor after the			
	de-energized				
		enable off instruction is executed.			
		Setting range:0-6000, unit: rpm			
	Rotation Status,	The motor speed threshold when the output of the contracting brake is			
P01-31	Brake OFF Speed	valid when the motor is in the rotating state. Below this threshold, the			
	Threshold	output command of the band brake is valid; otherwise, the output command			
		of the band brake is valid after waiting for P01-32 time.			
	Rotation state,	Setting range:0-1000, unit: ms			
P01-32	servo OFF to brake	The maximum waiting time for the output of the contracting brake when			
	OFF delay	the motor is in the rotating state at the closing enabling time.			
	7	Setting range:0-1000, unit: 0.1ms			
P01-35	Z Signal width	Default width when set to 0			
	seiting	When there is a value, the Z signal width is in the set time unit			

8.2.3 P02-xx Gain Class Parameters

Param Code	Name	Note:
P02-00	Position Control Gain 1	 Setting range:0-20000, unit: 0.1/S The larger the parameter value of the proportional gain of the position loop regulator, the higher the gain proportion, the greater the stiffness, the smaller the position tracking error and the faster the response. But too

		large parameters are easy to cause vibration and overshoot.		
		This parameter is for steady state response.		
		Setting range:0-20000, unit: 0.1/S		
		• The larger the parameter value of the proportional gain of the position		
D02 01	Position Control	loop regulator, the higher the gain proportion, the greater the stiffness, the		
P02-01	Gain 2	smaller the position tracking error and the faster the response. But too		
		large parameters are easy to cause vibration and overshoot.		
		• This parameter is for dynamic response.		
		Setting range:0-100, unit: 1%		
		The larger the parameter value of the feedforward gain of the speed loop,		
D 02.02	velocity	the smaller the position tracking error of the system and the faster the		
P02-03	feedforward gain	response. However, if the feedforward gain is too large, the position loop		
		of the system will be unstable, and it is easy to produce overshoot and		
		oscillation.		
		Setting range:0-64.00, unit: 0.01ms		
D02 04	feedforward	This parameter is used to set the speed loop feedforward filter		
P02-04		time constant. The larger the value, the greater the filtering		
	smoothing constant	effect, but at the same time the phase lag increases.		
		Setting range: 10-20000, unit: 0.1Hz		
		Increasing the speed proportional gain value can improve the speed		
D02 10	Speed Proportional	response, but too large is easy to produce vibration and noise.		
P02-10	Gain 1	Increase the value of this parameter as much as possible under the		
		condition that the system does not produce oscillation.		
		• This parameter is for static responses.		
		Setting range: 15-51200, unit: 0.01ms		
		• The integral time constant of speed regulator, the smaller the set value,		
P02-11	X 7 1 1 1 1 1	the faster the integral speed and the greater the stiffness, too small is easy		
	Velocity integral	to produce vibration and noise.		
	constant 1	• In the case of no oscillation of the system, reduce the value of this		
		parameter as much as possible.		
		This parameter is for steady state response.		

		Setting range: 10-20000, unit: 0.1Hz		
D02.12	Speed Proportional	Increasing the speed proportional gain value can improve the speed		
		response, but too large is easy to produce vibration and noise.		
P02-13	Gain 2	• Increase the value of this parameter as much as possible under the		
		condition that the system does not produce oscillation.		
		• This parameter is for dynamic response.		
		Setting range: 15-51200, unit: 0.01ms		
		• The integral time constant of speed regulator, the smaller the set value,		
	V-1itint1	the faster the integral speed and the greater the stiffness, too small is easy		
P02-14	velocity integral	to produce vibration and noise.		
	constant 2	• In the case of no oscillation of the system, reduce the value of this		
		parameter as much as possible.		
		• This parameter is for dynamic response.		
	torque feedforward gain	Setting range: 0-200, unit: 1%		
P02-19		Set the current loop feedforward weighting value. This parameter adds the		
		differential of the speed command to the current loop after weighting.		
torque f	torque feedforward	Setting range:0-6400, unit: 0.01ms		
P02-20	smoothing constant	This parameter is used to set the torque feedforward filter time constant.		
		Setting range:10-1000, unit: 0.1%		
	friction compensation gain	Parameters for responsiveness to external disturbances are set. The		
		higher the setting value, the better the response to external		
P02-21		disturbance. If the effect is not sufficient, increase the setting value of		
		friction compensation gain by 10% within the range where no		
		vibration occurs. However, if the device has a resonant frequency, the		
		setting value is too high, which may cause vibration.		
		Setting range:10-1000, unit: 0.1%		
		Parameters for responsiveness to external disturbances are set. The		
D02 22	the second friction	higher the setting value, the better the response to external		
P02-22	compensation gain	disturbance. If the effect is not sufficient, increase the setting value of		
		friction compensation gain by 10% within the range where no		
		vibration occurs. However, if the device has a resonant frequency, the		

			setting value is too high, which may cause vibration.		
		friction	Setting range:0-100, unit: 1%		
P02-23		compensation	the setting value, the better the effect, but the setting value is too high, and the response is more prone to vibration. Normally, set the setting		
		coefficient	value below95%		
		Friction			
B02 24		compensation	Setting range:0-10000, unit: 0.1Hz		
F02-24		frequency	This parameter is used for friction compensation frequency compensation		
		compensation			
		Friction			
P02-25		compensation gain	Setting range:1-1000, unit: % This parameter is used for friction compensation gain compensation		
		compensation			
	0	Gain switching	0: No gain switching.		
P02-30	Ŭ	setting	1: Automatically switch gain according to conditions		
			Setting range:0-9 Set the conditions for switching the first gain (P02-00, P02 - 10, P02-11, P08-20) and the second gain (P02-01, P02-13, P02-14, P08-21		
1		Gain switching	0: Positioning completion output signal ON		
	1	l setting	1: Positioning completion output signal OFF		
			2: Positioning approach output signal ON		
P02-30			3: Positioning approach output signal OFF		
		4: Position command filter output =0 and command pulse input OFF			

			5: Position command pulse input ON				
			6: Gain switching IO input active				
			7: Zero speed status is valid				
			8: Motor rotation state				
			9: 5	Speed	d consistent state		
		Gain switching	Set	tting	range:0-60000 Unit	: 1ms	
P02-31		time 1	the second group gain switch time is set by switching that first group gain				
		Gain switching	Setting range:0-60000 Unit: 1ms				
P02-32		time 2	the switch time of that first group gain is set by the second group gain				
P02-33		Gain Switching	Set the	tting wait	range: 0- 1000. 0, t	unit: ms oup of gain switch is set when the switching	
			condition is reach				
		Coin Switching	Setting range: 0-1000. 0, unit: ms				
P02-34		Gam Switching	the second group gain switch wait time is set when that switching				
		Latency 2	condition is reach				
			Setting range:0-4				
			Set the conditions of PI control and P control of speed loop				
			v	/al	judging	Notes	
			u	ie	condition		
			0)	torque command	When torque command is less than	
						P02-41 set threshold, it is PI control; if it	
						is greater than P02-41 set threshold, it is	
		Mode switch				P control	
P02-40	0	function selection	1		speed command	When the speed command is less than the	
						threshold set by P02-42, it is PI control,	
						and when it is greater than the threshold,	
						it is P control	
			2	2	acceleration	When the acceleration is less than the	
						threshold set in P02-43, it is PI control,	
						and when it is greater than the threshold,	
					it is P control		

		3	position	When the position deviation is less than	
			deviation	the threshold set by P02-45, it is PI	
				control, and when it is greater than the	
				threshold, it is P control	
		4	modeless switch	The speed loop keeps PI control and does	
				not switch any more	
		Setting	range:0-350, unit:	1%	
P02-41	Mode switch torque	When I	02-40.0=0, when the	torque command is less than the set value,	
	command threshold	drive P	I control, and when it	is greater than the set value, drive P control.	
		Setting	range:0-6000, unit	: rps	
D02 42	Mode switch speed	When F	202-40.0=1, when the	speed command is less than the set value, the	
P02-42	command threshold	driver PI controls, and when it is greater than the set value, the driver P			
		controls.			
	Mode switch	Setting range:0-30000, unit: 1rps/s			
D02 42		When P02-40.0=2, when the acceleration is less than the set value, the			
102-45	threshold	driver PI controls, and when it is greater than the set value, the driver P			
	unesnord	controls.			
	Mode switch	Setting range:0-10000, unit: 1 instruction unit			
P02-44	position deviation	When P02-40.0=3, when the position deviation is less than the set value,			
102-44	threshold	the driver PI controls, and when it is greater than the set value, the driver P			
		controls.			
	torque command	Setting range: -100-100, unit: 1%			
P02-50	addition value	Valid in position control mode. This value is added to the torque setpoint			
		for vertical axis static torque compensation.			
	Positive direction	Setting	range: -100-100, ui	nit: 1%	
P02-51	torque	Valid ir	n position control mod	de. Used to compensate for positive static	
	compensation value	friction			
	Negative direction	Setting	range: -100-100, ui	nit: 1%	
P02-52	torque	Valid ir	n position control mod	de. for compensating the opposite static	
	compensation value	friction			
P02-53	viscous friction	Setting range:0-100, unit: 1%			

		compensation value			
			Setting range:0-1		
		Low frequency	0: P02-58, P02-59 invalid		
P02-57		vibration	1: Effective		
		suppression setting	In position mode, it is used to suppress the machine shaking		
			caused by positioning.		
		Low frequency	Setting range: 10-2000 Unit: 0. 1Hz		
P02-58		vibration frequency			
		1			
		Low frequency	Setting range: 1 0-1000 Unit: %		
P02-59		resonance setting 1			
			Setting range:0-1		
	0	model following	0: Do not use model tracking		
		control selection	1: Using Model Tracking		
P02-60		vibration	Setting range:0-1		
	1	suppression	0: No vibration suppression		
		selection	1: Vibration suppression (P02-65,P02-65 active)		
			Setting range: 1 0-20000 Unit: 0.1/s		
D02 (1		model following	When P02-60.0=1, increasing the model following control gain increases		
P02-61		control gain	the responsiveness and shortens the positioning time. The responsiveness		
			of the servo system depends on this parameter		
		model following	Setting range: 500-2000 Unit: 0.1%		
P02-62		control gain	Increasing the gain compensation of the model following control improves		
		compensation	the response and shortens the positioning time.		
			Setting range: 1 0-1000 Unit: 0.1%		
P02-63		Model tracking	When the response is different between forward and reverse, use the		
		control bias	following parameters to fine-tune.		
		(forward direction)	If the set value is decreased, the response becomes slow, but overshoot is		
			less likely to occur.		
D02 (4		Model tracking	Setting range: 1 0-10000 Unit: 0.1%		
P02-64		control bias	When the response is different between forward and reverse, use the		

		(reverse direction)	following parameters to fine-tune.		
			If the set value is decreased, the response becomes slow, but overshoot is		
			less likely to occur.		
		Vibration	Setting range: 1.0-2500 Unit: 0.1Hz		
P02-65		Suppression 1			
		Frequency A	Vibration Suppression 1 Frequency A. P02-60-1 works when enabled		
		Vibration			
P02-66		Suppression 1	Setting range: 1 0-2500 Unit: 0.1Hz		
		Frequency B	Vibration Suppression 1 Frequency B. P02-60-1 works when enabled		
			Setting range: 1 0-10000 Unit: 0.1%		
		Speed feedforward	If the overshoot still occurs even if the model tracking control gain, the		
		compensation of	model tracking control bias (forward direction) and the model tracking		
P02-67		model following	control hiss (reverse direction) are adjusted, it can be improved by		
			adjusting this parameter. If the set value is decreased, the response		
		control	becomes slow, but overshoot is less likely to occur		
		second model	Setting range: 1 0-20000 Unit: 0.1/S		
P02-68		following control	When P02− 60.0=1, increasing the second model following		
		gain	control gain increases the responsiveness and shortens the positioning		
			time. The responsiveness of the servo system depends on this parameter		
		the second model	Setting range: 500-2000 Unit: 0.1%		
P02-69		follow control gain	Increasing the gain compensation of the model following control improves		
		compensation	the response and shortens the positioning time.		
		Speed vibration	Setting range:0-1		
P02-70	0	speca violation	0: Nospeed suppression		
		suppression setting	1:Speed vibration suppression		
<u> </u>		velocity damping	Setting range: 10-20000 Unit: 0.1Hz		
P02-71		frequency	Set speed vibration suppression frequency		
		Speed suppression	Setting range: 10-20000 Unit: 0. 1Hz		
P02-72		frequency 2	Set speed vibration suppression frequency 2		
P02-73		velocity damping	Setting range: 0 - 1000 Unit: 1%		

	gain compensation	
P02-74	velocity damping	Setting range: 0 - 300 Unit: 1%
102-74	gain	The larger the value, the stronger the vibration suppression effect
	Speed Vibration	
P02-75	Suppression	Setting range: 0 - 300 Unit: 1%
	Attenuation Gain 2	The larger the value, the stronger the vibration suppression effect
P02-76	Compensation of	
	time parameter 1 of	Setting range: 0 - 1000 Unit: 0.01ms
	speed vibration	
	suppression filter	
	Compensation of	
	time parameter 2 of	Setting range: 0 - 1000 Unit: 0.01ms
P02-77	speed vibration	
	suppression filter	
D 02.00	Current control	Setting range:0-100, unit: 1%
P02-88	gain value	This parameter is the current gain adjustment factor

8.2.4 P03-xx Position Parameters

Param Code		Name	Note:		
P03-00 P03-00 P03-00 P03-00 Source Source Source P03-00 Source Source Source P03-00		0: pulse command 1: Reserved 2: Bus command 3: Built-in multi-segment position			
P03-01	0	command pulse shape	 0: Quadrature pulse command (90° phase difference two-phase pulse) 1: direction + pulse command 2 or 3: Double pulse command (CW+CCW) 		
P03-02	0	Overtravel signal clears residual position	0: Overtravel signal does not clear residual position deviation 1: Overtravel signal clears residual position deviation		

		deviation	
			Used to adjust the pulse instruction counting direction
	0	instruction pulse	0: Normal.
P03-03		negation	1: Direction reversed
		instruction pulse active	0: rising edge count
		level negation	1: falling edge count
D02.04		1 61	Setting range:0-2000 Unit: 0.lus
P03-04		instruction pulse filter	Instruction pulse filter width setting, filter width = set value *0.1(us)
			0: Position deviation is less than P03-06 set value
			1: The position deviation is less than the set value of P03-06, and the
P03-05		Positioning completion	filtered position command is 0.
		output condition	2: Position deviation is less than P03-06 set value, and the command
			after position command is 0
			Setting range: 0-65535 units: instruction unit
			It is used to set the threshold value of the output signal of positioning
D02 0C		Positioning completion range	completion, and the set value is the command unit (refer to
P03-06			parameters P03-09, P03-40 and P03-42).
			The positioning completion range is used as the judgment basis of
			position gain setting in the one-key self-setting function.
			Setting range: 0-65535 units: instruction unit
D02.07		Positioning proximity	It is used to set the threshold value of positioning approach output
P03-07		threshold	signal, and the set value is the command unit (refer to parameters
			P03-09, P03-40 and P03-42).
		Number of common d	Setting range: 0-1073741823
P03-09		Used to set the number of command pulses for one rotation	
		of the motor. When this parameter is set to 0, PO3-40 and	
	of motor	PO3-42 parameters are valid.	
		Evenesive position	Setting range: 0-1073741823 Unit: Command Unit
P03-15		deviation setting	Set the pulse number of allowable deviation, and alarm E.501 when
		ueviation setting	exceeding the set value; Not detected when set to 0
P03-17		position command	Setting range: 0-10000 Unit: 0.1ms

		moving average time	Set the time constant of the position command smoothing filter,			
			moving average filter.			
		Position command	Setting range: 0-65535 Unit: 0.1ms			
P03-18		first-order low-pass	Sets the time constant of the position command smoothing filter, a			
		filter time parameter	first-order low-pass filter.			
			Setting range:0-1073741823			
		Denominator of the	When P03-23 is equal to 0, the frequency division pulse number			
P03-23		number of divided	=P03-25*4 ; When P03-23 is not equal to 0, the number of divided			
		output pulses	pulses =2^23*P03-25/P03-23.			
			Setting range: 0-65535			
		-	Set the absolute value of the motor rotation, A, B frequency pulse			
P03-25		Frequency division	output quantity.			
		output pulse number	For example, if the setting value is 2500, the A and B signals output			
			2500 pulses each time the motor rotates one turn			
		Enguanau division	is use for adjusting that phase sequence of the frequency division			
D02 26		output pulse phase	output pulse			
103-20			0: Normal.			
sec		sequence inversion	1: Direction reversed			
		1 1 1.1	Setting range:0-100 Unit: %			
P03-30		Excessive position deviation warning value	Excessive position deviation warning value =P03-30 set value			
			*P03-15, warning occurs when the set value is exceeded A.900			
			Unit: Command UnitSetting Range: 0-1073741823			
D02 21		Excessive servo UN	Set the pulse number of allowable deviation when servo is ON, if it			
P03-31		position deviation alarm	exceeds the set value, it will alarm E.503, and it will not be detected			
		value	when it is set to 0			
		Servo ON position	Setting range:0-100 Unit: %			
P03-33		deviation excessive	Excessive servo ON position deviation warning value = set value			
		warning value	*P03-31, warning A.901 occurs when the set value is exceeded			
D02.24		overshoot detection	Setting range:0-100 Unit: %			
P03-34		value	Overshoot detection threshold = $P03-34*P03-06$.			

		The overshoot detection value will be used as the judgment basis of		
		position gain setting in one-button self-setting function.		
	Molecule of electronic			
P03-40	gear 1	See6.1.4 Example of Electronic Gear Ratio Calculation Method		
P03-42	Denominator of	forexplanation		
	electronic gear 1			
D02 44	Molecule of electronic			
P03-44	gear 2	See6.1.4 Example of Electronic Gear Ratio Calculation Method		
P03-46	Denominator of	forexplanation		
	electronic gear 2	Note: Encoder numerator is 8388008		

8.2.5 P04-xx Speed Parameter

Param	Name	Note				
Code	Ivanie	Note.				
P04-00	Speed command selection setting	0: analog quantity command 1: Set value of P04-02 2: Bus command 3: Built-in multi-speed				
P04-01	JOG Speed Command Setpoint	OG Speed Command Setting range:0-6000, unit: rpm Setpoint Set JOG running speed				
P04-02	Speed command digital setpoint	Setting range:-6000-6000, unit: rpm When P04-00 is set to 1, P04-02 is the speed setting				
P04-04	Zero speed clamp speed threshold	Setting range: 0-6000, unit:rpm Sets the speed command threshold that triggers the zero speed position clamp function				
P04-05	overspeed threshold	Setting range: 0-6300, unit:rpm Set the allowable maximum speed value, exceeding the set value will cause E.420 overspeed alarm				
P04-06	forward speed limit	Setting range: 0-6300, unit:rpm Limit motor forward speed value				

D04.07	reverse speed limit	Setting	range: -	-6300-0,	unit: rpm		
P04-07		Limit mo	tor reverse	e speed va	lue		
		Setting	range: ()-2000,	unit: rpm		
D04 10	Zero speed detection	the zero speed detection threshold value is set, and when that rotate speed					
P04-10	value	of the motor is lower than the threshold value, the zero speed detection					
		signal car	be outpu	t through	the output port		
	Motor rotation	Setting	range: ()-2000,	unit: rpm		
P04-11	detection speed value	Set the m	otor rotati	on detecti	on threshold, the n	notor speed is higher than	
	detection speed value	the value	can be dis	splayed th	rough the LED par	nel status	
		Setting	range: ()-2000,	unit: rpm		
	Speed reaches signal	Set the th	reshold va	alue of the	speed consistent s	ignal, and when the	
P04-12	threshold	difference	e between	the motor	speed and the con	nmand speed is within the	
	uneshold	threshold	value, ou	tput the "s	peed arrival dete	ction" signal through the	
		output po	rt				
P04 14	speed command	Setting	range: ()-10000,	unit:1ms/1000rp	om	
104-14	acceleration time	Set acceleration at speed control					
D04 15	Speed command	Setting range: 0-10000, unit:1ms/1000rpm					
F04-13	deceleration time	Set decele	eration at	speed con	trol		
		Setting	range: -	-6000-60	00, unit: rpm		
		Parameters P04-30 to P04-37 set the speed of internal speed 1 to internal					
		speed 8, respectively					
		The internal speed switching method is as follows:					
		P04-00 is set to 3 when the speed loop is controlled.					
P04-30	Internal speed setting	The corresponding input port functions are defined as 0D, 0E, 0F					
		Example: Use input signal ports DI3, DI4 and DI5, and define I/O port					
P04-37	1-8	functions as 0D, 0E and 0F respectively (see P06- 11 parameter description					
		for function	on definit	ion), and i	ealize speed switch	hing operation set by	
		correspon	ding para	meters the	ough I/O level con	nbination.	
		DI3	DI4	DI5	action		
					parameter		
		0	0	0	P04-30		

	1	0	0	P04-31	
	0	1	0	P04-32	
	1	1	0	P04-33	
	0	0	1	P04-34	
	1	0	1	P04-35	
	0	1	1	P04-36	
	1	1	1	P04-37	

8.2.6 P05-xx Torque Parameters

Param Code	Name	Note:				
P05-00	Torque command selection setting	0: analog quantity command 1: Set value of P05-03 2: Bus command 3: Built-in multi-stage torque				
P05-01	Torque Control Speed Limit Source Settings	0: Speed analog quantity command 1: Set value of P05-02 2: Bus command 3: Built-in multi-speed				
P05-02	Torque control speed limit	Setting range: 0-6000 Unit:rpm Set the maximum motor speed in torque mode to prevent mechanical damage due to excessive motor speed in no-load mode Torque control mode active				
P05-03	Torque command digital setpoint	Setting range:-300-300, unit: % When P05-00 is set to 1, P05-03 is the digital torque setpoint				
P05-05	Torque Limiting Source Settings	 0: Internal/external torque setting P05-10,5-11 or P05-12,05-13 1: Torque analog command amplitude limiting, and P05- 10, 05 -11 or P05- 12, 05 -13 are superimposed at the same time 2: Torque analog command amplitude limiting, which takes effect only when PCL and NCL are valid. Superpose P05-10,05-11 or P05-12,05-13 simultaneously 				

	Torque limit detection	Setting range: 0-100	00, unit: ms			
P05-06	signal output delay	Set signal delay time in DO port output torque limit				
P05-10	Forward internal torque limit	Setting range: 0-350 units: 1% rated torque Limit motor forward output, 100 means 1 times torque, 300 means 3 times torque When the torque output reaches the limit value, the torque limit signal can be output through the DO port				
P05-11	Reverse internal torque limit	Setting range: -350-0 units: 1% rated torque Limit the reverse output of the motor. Set 100 to repres 1 times torque and 300 to represent 3 times torque. When the torque output reaches the limit value, the torque limit signal can be output through the DO port				
P05-12	Forward external torque limit	Setting range: 0-350 This function is switched setting the selected DI po (positive external to switched by controlling to terminal logic effective invalid If the DI function is not a torque clipping When the torque output the	 units: 1% rated torque d using one of the external input ports in CN portinput port function selection to 7 rque limit value). The control mode can the logic state of the port. torque limiting value External clipping value P05-12 Internal clipping value P05-10 assigned, the system defaults to P05-10 for reaches the limit value, the torque limit ugh the DO port 	N1, 1 be		
P05-13	Reverse external torque limit	Setting range: 0-350 This function is switched setting the selected DI po (reverse external too switched by controlling t) units: 1% rated torque d using one of the external input ports in CN ortinput port function selection to 8 rque limit value). The control mode can the logic state of the port.	N1, 1 be		

		terminal lo	ogic	torque limiting va	ilue		
		effective		External clipping			
				value P05-13			
		invalid		Internal clipping			
				value P05-11			
		If the DI function is not assigned, the system defaults to P05-11 for					
		torque clippi	ing				
		When the to	rque output	reaches the limit va	lue, the torque limit		
		signal can b	e output thro	ough the DO port			
		Setting ra	nge: -300	-300, unit:% rate	d torque		
		Parameters P05-14 to P05-17 set internal torque 1 to internal torque 4,					
		respectively					
		The internal speed switching method is as follows:					
		P05-00 is set to 3 when the torque loop is controlled.					
P05-14 ~ P05-17		The corresponding input port functions are defined as11, 12					
		Example: Use input signal ports DI3, DI4. I/O port functions are					
	Internal setting torque 1 to	defined as 11 and 12 respectively (see P06- 11 parameter description					
	4	for function	definition),	g operation corresponding			
		to parameter	setting is r	ealized through I/O	level combination.		
		DI3	DI4	action			
				parameter			
		0	0	P05-14			
		1	0	P05-15			
		0	1	P04-16			
		1	1	P04-17			

8.2.7 P06-xx I/O Parameters

parameter code	Name	Note:
P06-00	Power-up active DI	Setting range: 00-ffff Factory setting: 0

	function assignment 1	Table 1 Correspond	ing relationship between setting value and
		corresponding powe	Power on active function
		n. xxx1	0x01: Servo Enable
		n. xxx2	0x02: Alarm cleared
		n. xxx4	OxO3: Forward Overtravel
		n. xxx8	OxO4: Reverse Overtravel
		n. xx1x	0x05: Control mode switching
		n. xx2x	Undefined
		n. xx4x	0x07: Positive external torque limit
			value switching
		n. xx8x	0x08: Reverse external torque limit
			value switching
		n. x1xx	0x09: Gain switching
		n. x2xx	OxOA: Zero lock
		n. x4xx	OxOB: Pulse command input disabled
		n. x8xx	Undefined
		n. 1xxx	OxOD: Speed Multi-Segment Selection 1
		n. 2xxx	OxOE: Speed multi-segment selection 2
		n. 4xxx	OxOF: Speed multi-segment selection 3
		n. 8xxx	OX10: Position residual instruction
			clear
		Setting range: 00-ff	ff Factory setting: 0
		Table 2 Correspond	ing relationship between set value and
	Power-up active DI	corresponding powe	Power-on active function
P06-01	function assignment 2	n. xxx1	OX11: Torque multi-stage selection 1
	_	n. xxx2	OX12: Torque multi-stage selection 2
		n. xxx4	0x13: Gantry synchronization enable

					_
			n. xxx8	0x14: Gantry alignment reset signal	
			n. xx1x	0x15: Home switch signal	
			n. xx2x	0x16: Return to home start signal	
			n. xx4x	0X17: Speed simulation command	1
				negated	
			n. xx8x	0X18: Torque simulation command	1
				negated	
			n. x1xx	0X19: External alarm signal	
			n. x2xx	OX1A: Emergency stop input signal	
			n. x4xx	OX1B: Probe 1 input signal	
			n. x8xx	OX1C: Probe 2 input signal	
			n. 1xxx	OX1D: Pole detection request signal	
			n. 2xxx	OX1E: Position command negated signal	
		Speed analog command	0: Use Ain_1 (Spee	d Analog Command Interface)	
	0	selection	1: Use Ain_2 (torqu	e simulation command interface)	
P06-05		Torque simulation	0: Use Ain_2 (torqu	e simulation command interface)	
	1	command selection	1: Use Ain_1 (Speed	d Analog Command Interface)	
			Setting range: 00-11	E Factory setting: 1 Servo ON	
	01		0x00: none 0x01: se	ervo enable 0x02: alarm clear 0x03: forward	
P06-11			overtravel 0x04: rev	verse overtravel 0x05: control mode switch	
			0x06: P control com	nmand input	
			0x07: Forward ext	ernal torque limit value switch	
			0x08: Reverse exte	ernal torque limit value switch	
			0x09: Gain switch		
			0x0A: Zero lock		
			0x0B: Pulse comm	and input disable	
			0x0D: Speed multi	-segment selection 1	
			0x0E: Speed multi	-segment selection 2	

			0x0F: Speed multi-segment selection 3
P06-11	01	DI1 Terminal	0X10: Position residual command clear
		Setup-Function Selection	0X11: Torque multi-segment selection 1
			0X12: Torque multi-segment selection 2
			0x13: Gantry synchronization enable
			0x14: Gantry alignment reset signal
			0x15: Home switch signal
			0x16: home point return start signal 0X17: speed simulation
			instruction negated 0X18: torque simulation instruction negated
			0X19: external alarm signal 0x1A: emergency stop input signal
			0X1B: probe 1 input signal 0X1C: probe 2 input signal 0X1D:
			magnetic pole detection request signal 0X1E: position instruction
			negated signal note: low-speed terminal, the effective level can be
			confirmed only if it exceeds 3.2ms
P06-11	2	DI1 Terminal Setup-Logic Select	 0: active low (optocoupler off) 1: Active high (optocoupler on) 2: falling edge valid 3: rising edge is valid 4: rising and falling edges are valid
P06-12	01	DI2 Terminal	
P06-12		Setup-Function Selection	See P06-11.01
	2	DI2 terminal setting-logic selection	See P06-11.2
P06-13	01	DI3 Terminal Setup-Function Selection	See P06-11.01

	2	DI3 Terminal	See P06-11.2
		Setup-Logic Select	
	01	DI4 Terminal	See P06-11 01
P06-14		Setup-Function Selection	
10011	2	DI4 Terminal	S D0(11)
		Setup-Logic Select	See P06-11.2
	01	DI5 Terminal	
DOC 15		Setup-Function Selection	See P06-11.01
P00-13	2	DI5 Terminal	
		Setup-Logic Select	See P06-11.2
		1.5	Setting range: 0-13, factory setting: 3 Servo ready for output
			0x00: None
			0x01: Servo alarm
			0x02: Band brake output
			0x03: Servo ready
			0x04: Position arrived
			0x05: Proximity
			0x06: Speed arrival detected
			0x07: Zero speed detection
			0x08: Moment Limit
		DO1 Terminal	0x09: Speed Limit
	01	Setun-Function Selection	0x0A: Servo warning
P06-21		Setup-1 unetion Selection	0x0B: Reserved
			0x0C: electrical zero return complete
			0x0D: Return to zero complete
			0x0E: In forward overtravel
			0x0F: In reverse overtravel
			0x10: Enable state
			0x11: Dynamic Braking
			0x12: Motor rotation detected
			0x13: Gain 1 active
			0x14: Z signal output
		DO1 terminal	0: DO is off when status is valid
	2	setting-logic selection	1: DO is turned on when the status is valid
P06-22	01	DO2 Terminal	See P06-21.01

		Settings-Function	
		Selection	
		DO2 terminal	
	2	setting-logic selection	See P06-21.2
	0.1	DO3 Terminal	
D 06 D 0	01	Setup-Function Selection	See P06-21.01
P06-23		DO3 terminal	
	2	setting-logic selection	See P06-21.2
		DO4 Terminal	
	01	Settings-Function	See P06-21.01
P06-24		Selection	
	2	DO4 terminal	
	2	setting-logic selection	See P06-21.2
		G 1 1	Setting range: 10-2000, unit:1rpm/V
DOC 40		corresponding to speed	Sets the coefficient between the analog command and the speed
P06-40			control command input by CN1
		analog quantity I v	Example: 500 represents 500 revolutions per minute per V
DOC 41		All filter time constant	Setting range:0-2500, unit: 0.01ms
P00-41			Sets the analog command filter time factor for the AI1 input
DOC 12		ALL D'	Setting range: -9999-9999, unitV
P00-42		All Blas	Sets the analog command zero offset for the AI1 input
		Tanana analara	Setting range: 0-100, unit:1%
DOC 42		corresponding to torque	Sets the coefficient between the analog command and the speed
P06-43			control command input by AI1
		analog quantity I v	For example: 30 represents 30% of rated torque per V
			Setting range: 0-9999 unit:mv
DOC 10			Set the dead zone voltage value of speed analog command. When
P06-46		All analog deadband	the analog quantity is set within the positive and negative value
			range, the system defaults to zero

8.2.8 P08-xx Advanced Function Parameters

parameter code		Name	Note:	
code				
P08-00	0	Off-line inertia identification mode	Setting range:0–1 0: Default mode (set according to P08-03, P08-04 parameters) 1: Internal setting mode (P08-03, P08-04 automatic setting)	
	1	On-line inertia identification mode	Setting range:0-1	
P08-01		inertia identification	Setting range:0-20000, unit: 1%	
P08-02		Inertia identification of motor rotation turns	Setting range:5-1000, unit: 0.1 turn Setinertia to identify the value of motor rotation circle	
P08-03		inertia identification maximum speed	Setting range: 10-2000, unit: rpm Set inertia to identify maximum running speed	
P08-04		inertia identification acceleration time	Setting range: 20-800, unit: ms Set the acceleration and deceleration time of the motor during inertia identification	
P08-05		Waiting time after single inertia identification	Setting range: 50-10000, unit: ms Waiting time after single inertia identification	

		Setting range: 0-5	
		0:(waiting time P08-11-> forward movement P08-07)* number of	
		movements P08-12	
		1:(waiting time P08-11-> reverse movement P08-07)* number of	
		movements P08-12	
		2:(waiting time P08-11-> forward movement P08-07)* number of	
		movements P08-12->(waiting time P08-11-> reverse movement	
D08 06		P08-07)* number of movements P08-12	
F08-00	Program JOG mode	3:(waiting time P08-11-> reverse rotation movement P08-07)*	
		number of movements P08-12->(waiting time P08-11-> forward	
		rotation movement P08-07)* number of movements P08-12	
		4:(waiting time P08-11-> forward movement P08-07-> waiting time	
		P08-11-> reverse movement P08-07)* number of movements P08-12	
		5:(waiting time P08-11-> reverse movement P08-07-> waiting time	
		P08-11-> forward movement P08-07)* number of movements	
		P08-12	
P08-07	Program JOG Move	Setting range: 1-2000, unit: 0.1 turn	
P08-07	Program JOG Move Distance	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG	
P08-07	 Program JOG Move Distance Program JOG	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm	
P08-07 P08-09	Program JOG Move Distance Program JOG	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is	
P08-07 P08-09	Program JOG Move Distance Program JOG moving speed	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running	
P08-07 P08-09	Program JOG Move Distance Program JOG moving speed PROGRAMME JOG	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running	
P08-07 P08-09	Program JOG Move Distance Program JOG moving speed PROGRAMME JOG ACCELERATION	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running Setting range: 2-10000, unit: ms	
P08-07 P08-09 P08-10	Program JOG Move Distance Program JOG moving speed PROGRAMME JOG ACCELERATION DECELERATION	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running Setting range: 2-10000, unit: ms Set the acceleration and deceleration time during program	
P08-07 P08-09 P08-10	 Program JOG Move Distance Program JOG moving speed PROGRAMME JOG ACCELERATION DECELERATION TIME	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running Setting range: 2-10000, unit: ms Set the acceleration and deceleration time during program JOG operation	
P08-07 P08-09 P08-10	Program JOG Move Distance Program JOG moving speed PROGRAMME JOG ACCELERATION DECELERATION TIME	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running Setting range: 2-10000, unit: ms Set the acceleration and deceleration time during program JOG operation	
P08-07 P08-09 P08-10 P08-11	Program JOG Move Distance Program JOG moving speed PROGRAMME JOG ACCELERATION DECELERATION TIME Program JOG Wait	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running Setting range: 2-10000, unit: ms Set the acceleration and deceleration time during program JOG operation Setting range: 0-10000, unit: ms	
P08-07 P08-09 P08-10 P08-11	Program JOG Move Distance Program JOG moving speed PROGRAMME JOG ACCELERATION DECELERATION TIME Program JOG Wait Time	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running Setting range: 2-10000, unit: ms Set the acceleration and deceleration time during program JOG operation Setting range: 0-10000, unit: ms Set program JOG run wait time	
P08-07 P08-09 P08-10 P08-11 P08-12	Program JOG Move Distance Program JOG moving speed PROGRAMME JOG ACCELERATION DECELERATION DECELERATION TIME Program JOG Wait Time	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running Setting range: 2-10000, unit: ms Set the acceleration and deceleration time during program JOG operation Setting range: 0-10000, unit: ms Set program JOG run wait time Setting range: 0-10000, unit: Time	
P08-07 P08-09 P08-10 P08-11 P08-12	Program JOG Move Distance Program JOG moving speed PROGRAMME JOG ACCELERATION DECELERATION TIME Program JOG Wait Time Number of program JOG moves	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running Setting range: 2-10000, unit: ms Set the acceleration and deceleration time during program JOG operation Setting range: 0-10000, unit: ms Set program JOG run wait time Setting range: 0-10000, unit: Time Set the number of program JOG moves	
P08-07 P08-09 P08-10 P08-11 P08-12	 Program JOG Move Distance Program JOG moving speed PROGRAMME JOG ACCELERATION DECELERATION TIME Program JOG Wait Time Number of program JOG moves	Setting range: 1-2000, unit: 0.1 turn Number of turns per step when setting program JOG Setting range: 1-10000, unit: rpm Set the maximum speed of movement when program JOG is running Setting range: 2-10000, unit: ms Set the acceleration and deceleration time during program JOG operation Setting range: 0-10000, unit: ms Set program JOG run wait time Set the number of program JOG moves Setting range:0-1	
			1: Self-timing, no inertia identification
--------	---	----------------------	---
			Setting range:0-3
			0, 1: Standard mode, model tracking is turned off
		Auto Adjust Sattings	2: Positioning mode: turn on end vibration suppression, turn on
P08-15	1	Auto Adjust Settings	model tracking, model tracking speed compensation 100%
			3: Positioning mode, pay attention to overshoot: Turn on end
			vibration suppression, turn on model tracking, model tracking speed
			compensation 90%
		Automatic	Setting range: 100-7000, unit: 0.1Hz
P08-16		adjustment of	During auto-tuning, search for the maximum value of the gain.
		maximum gain	
		velocity observer	Setting range: 10-500, unit: Hz
P08-17		gain	The higher the setting, the greater the bandwidth of the speed
		gam	observer, and at 500, the observer is disabled
P08-18		valaaitu ahaamuan	Setting range: 0-500, unit: %
			The larger the set value, the greater the torque effect of the speed
		coefficient	observer
			Setting range:0-2500, unit: 0.01ms
P08-20		Torque Command	Torque command filtering time constant 1, when the motor is
		Filter Constant 1	running in the case of howling, the value can be set appropriately
			large.
			Setting range:0-2500, unit: 0.01ms
P08-21		Torque command	Torque command filtering time constant 2, when the motor is
100 21		filter constant 2	running in the case of howling, the value can be appropriately set to
			large.
		2nd Segment 2nd	Satting range: 100-5000 up it · Hr
P08-22		Torque Command	Second Order Torque Command Filter Frequency
		Filter Frequency	Second Order Torque Command Finter Frequency
		Second stage second	Setting range:50-100, unit: 0.01
P08-23		torque command	Q value of second-order torque command filter

		filter Q value	
	0	First trap selection	Setting range:0-1 0: the first trap is not active, 1: first trap active
P08-24	1	Second trap selection	Setting range:0-1 0: 2nd trap invalid 1: second trap active
	3	Friction compensation function selection	Setting range:0-1 0: Invalid 1: Effective
P08-25	0	Adaptive Notch 1 Mode Settings	Setting range:0-1 0: Invalid 1: Allow the drive to automatically set the first trap
	1	Adaptive Notch 2 Mode Settings	Setting range:0-1 0: Invalid 1: Allows the drive to automatically set the second trap
P08-30		Notch Filter 1 Frequency	Setting range: 300-5000, unit: Hz Center frequency of trap 1. P 08 -24.0 needs to be set to enable to be effective When set to 5000, the trap is not valid
P08-31		Notch Filter 1 Width	Setting range: 50-1000 Unit: 0.01 Notch width class for Notch 1 is the ratio of the width to the center frequency
P08-32		Notch Filter 1 Depth	Setting range:0–99 Notch depth level for Notch 1 The ratio between the input and the output is given for the center frequency of the trap The larger this parameter, the smaller the notch depth and the weaker the effect
P08-33		Notch Filter 2 Frequency	Same as P08-30. P08-24.1 needs to be set to enable to be effective

P08-34	Notch Filter 2 Width	Same as P08-31
P08-35	Notch Filter 2 Depth	Same as P08-32
P08-36	Notch Filter 3 Frequency	Same as P08-30
P08-37	Notch filter 3 width	Same as P08-31
P08-38	Notch Filter 3 Depth	Same as P08-32
P08- 51	sweep torque amplitude	Setting range: 1- 300 This setting is used as the maximum value of the sweep torque when the auxiliary function F 22 is executed.

8.3 List of Monitoring Items

Display sequence number	Display Item	Note:	Unit of Measure
d00.C.PU	position command pulse sum	This parameter can monitor the number of pulses sent by the user to the servo driver, so as to confirm whether there is pulse loss	instruction unit
d01.F.PU	Position feedback pulse summation	This parameter monitors the number of pulses fed back by the servo motor. The unit is consistent with the unit of the user input command	instruction unit
d02.E.PU	Position deviation pulse number	This parameter monitors the number of pulses of position lag during servo operation. The unit is consistent with the unit of the user input command	instruction unit
d03.C.PE	Position given pulse sum/ Feedback pulse of gantry motor	This parameter monitors the number of pulses the user sends to the servo drive. Unit: When using absolute value motor, each turn is calculated as8388608.	encoder unit
d04.F.PE	Position feedback pulse sum/	This parameter monitors the number of pulses fed back by the servo motor. Unit: When using absolute value motor, each turn is calculated as8388608.	encoder unit

d05.E.PE	Number of position deviation pulses/ gantry pulse deviation	This parameter monitors the number of pulses of position lag during servo operation. Unit:8388608per turn when using absolute motors.	encoder unit
d06.C.Fr	Pulse command input frequency	This parameter monitors the external pulse command input frequency	0.1KHz
d07.C.SP	speed command	This parameter can monitor the given speed of the servo when the servo motor is running	rpm
d08.F.SP	actual speed	This parameter can monitor the actual speed of the servo motor when it is running	rpm
d09. C.tQ	torque command	This parameter can monitor the servo set torque when the servo motor is running	%
d10. F.tQ	actual torque	This parameter can monitor the torque feedback when the servo motor is running	%
d11.AG.L	average torque	This parameter monitors the average torque of the servo motor over the past 10 seconds	%
d12.PE.L	peak torque	This parameter monitors the peak torque of the servo motor after power-up	%
d13.oL	cumulative load factor	This parameter can monitor the load rate of the drive. When the load rate exceeds 100, the drive will alarm overload.	%
d14.rG	regenerative load factor	This parameter can monitor the load rate of regenerative resistor. When it exceeds 100, the driver will alarm regenerative overload.	%
d15.PE.S	actual speed peak	This parameter can monitor the peak speed of the servo motor after power-on	rpm
d16.I.Io	Input IO Status	This parameter monitors the input port status of CN1. The upper vertical bar represents high level (optocoupler off), and the lower vertical bar represents low level optocoupler on. The corresponding relationship with the input port is that the vertical bars of the operation panel from right to left correspond to DI1-DI5 respectively	binary system
d17.o.Io	Output IO Status	This parameter monitors the output port status of CN1. The upper vertical bar represents that the optocoupler is on, the lower vertical bar represents that the optocoupler is off, and the corresponding	binary system

		relationship with the output port is that the four vertical bars from right to left of the operation panel	
d18.AnG	Motor mechanical angle	respectively correspond to DO1-DO4 This parameter can monitor the mechanical angle of the motor. One rotation is 360 degrees	0.1 degree
d19.HAL	electrical angle	Phase sequence position of incremental encoder motor Electrical angle of absolute encoder	0.1 degree
d20.ASS	Absolute encoder single turn value	This parameter can monitor the feedback value of the absolute encoder, and the value changes from 0 to8388607after one rotation	decimal system
d21.ASH	Absolute encoder multiturn value	This parameter monitors the number of revolutions of the multi-turn absolute encoder motor	decimal system
d22.J-L	inertia ratio	This parameter can monitor the real-time inertia of the load carried by the motor	%
d23.dcp	Main circuit voltage (DC value)	This parameter can monitor the DC voltage value of the main circuit	V
d24.Ath	Drive Temperature	This parameter monitors the drive temperature	degree centigrade
d25.tiE	cumulative running time	This parameter monitors the drive run time in: second	second
d26.1.Fr	Resonance frequency 1	This parameter monitors the resonance frequency 1, the high frequency resonance frequency	Hz
d28.2.Fr	Resonance frequency 2	This parameter monitors the resonant frequency 2, the low frequency resonant frequency	Hz
d29.cn	Current Control Mode	This parameter can monitor the current control mode. Refer to parameter P01-01 for specific corresponding relationship	
d30.Ai1	Input voltage of Ail port	This parameter monitors the Ail input voltage value	0. 001V
d31.Ai2	Input voltage of Ai2 port	This parameter monitors the Ai2 input voltage value (not available for P28 series)	0.001V
d32.c.Er	Number of abnormal communication of encoder	This parameter can monitor the number of abnormal communication of encoder after power-on	

122 11	Hardware model	This parameter monitors the drive model (hardware	
азэ.н	(hardware information)	power information)	
12.4.111	II 1 X/ '	This parameter monitors the hardware version	
034.11	Hardware Version	number	
		This parameter monitors the software version	
d35.S1	Software Version	First 2 digits: FPGA version; Last 2 digits: ARM	
		version	
d36.C.PU	position command pulse	This parameter monitors the sum of the position	instruction
	sum	command pulses (accumulated after power-up)	unit
127 E DU	Position feedback pulse	This parameter monitors the sum of the position	instruction
d37.F.PU	summation	feedback pulses (accumulated after power-up)	unit
d3 8. P.	Parameter number of	This parameter can querythe abnormal parameter	
Er	value exception	number when alarm 1 07	
120 4 1	Advanced Functional	This parameter can query the warning code when	
a39.A du	Exception Code	performing advanced functional exceptions	

8.4 auxiliary function

Display Item	Functions	Operation
F01.JoG	JOG Commissioning	 Press theM keyon the operation panel to switch to the auxiliary modeF**, operate theUp/Down key toF01.JoG, and press theENT key to enter the Jog working mode. The default Jog speed is 30rpm (P04-01 sets the JOG running speed). Press the Up key, and the motor will rotate forward at the speed of 30r/min; When the Down key is pressed, the motor reverses at a speed of 30r/min. Press theM key to exit Jog mode.
F02.run	Force Enable Run Speed Mode	 Press theM keyof the operation panel to switch to the auxiliary modeF**, operate theUp/Down key toF02.run, and press theENT key to enter the operation mode.

		2. Press the Up key to rotate the motor forward. Press the Up key for along
		timeto increase the motor speed. Press the Down key to rotate the motor
		backward. Pressthe Down key for alongtime to increase the motor speed.
		3. Press the M key to exit the mode.
		1. Press the M keyof the operation panel to switch to the auxiliary
	Analog input 1	modeF**, operate theUp/Down key toF03.Ai1, press theENT key,and
E02 A'1	automatic zero	of.Ai1will be displayed.
F03.A11	drift calibration	2. Press and hold the ENT key until finsh flashes, completing the Ail zero
	(VCMD)	drift auto-calibration.
		3. Press the M key to exit the mode.
		1. Press the M key of the operation panel to switch to the auxiliary
	Analog input 2	modeF**, operate theUp/Down key toF04.Ai2, press theENT key,and
E04 4 2	automatic zero	of.Ai2will be displayed.
F04.A12	drift calibration	2. Press and hold the ENT keyuntilfinsh flashes, completing the Ai2 zero
	(TCMD)	drift auto-calibration.
		3. Press the M key to exit the mode
	Automatic zero	Same asF03.Ai1
E05 A 2	drift	Note: the servo must be in the off enable state when performing this
F05.A15	compensation of	function, otherwise the finsh flashing page will not appear and the automatic
	current sensor	calibration cannot be completed
		This auxiliary function must be operated in the non-enabled state as follows
		1. Press the M keyof the operation panel to switch to the auxiliary
	Alexaluta anaadan	modeF**, operate theUp/Down key toF06.En0, press theENT key,
F06.En0	fault clearing	and clr.Ft will be displayed.
		2. Press and hold the ENT keyuntilfinsh flashes to clear the absolute
		encoder fault.
		3. Press the M key to exit the mode.
		This auxiliary function must be operated in the non-enabled state as follows
		1. Press the M keyof the operation panel to switch to the auxiliary
	Multi-turn value	modeF**, operate theUp/Down key toF07.En1, press theENT
F07.En1	clearing of	key,clr.EH will be displayed.
	absolute value	2. Press and hold the ENT keyuntil finsh flashes, which means the
	encoder	multi-turn value clearing of absolute encoder is completed.
		3. Press the M key to exit the mode.
	D (C)	This auxiliary function must be operated in the non-enabled state as follows
F10.ini	Restore factory settings	1. Enter the factory reset interface: press the M keyon the operation panel to
		switch to the auxiliary modeF**, operate theUp/Down key toF10.ini, and

		press the ENT key to enter 2. Select the parameter range to be restored: input the corresponding code		
				ode
		according to	the following table, and select the parameter range to be	
		restored. Press and hold theENT keyuntil a progress bar appears untilfinsh		
		flashes, com	pleting the factory reset.	
		Code	implication	
		51	Restore Level 1 Privilege Parameters (Application	
			Parameters)	
		52	Restore level 2 privilege parameters (application	
			parameters + motor parameters)	
		55	Restore all parameters (including hidden parameters)	
		1. Press the	M keyon the operation panel to switch to the auxiliary	
		modeF**, o	perate theUp/Down key toF11.Err, and press theENT key	y to
		display the j	past 8 times of historical fault information. The number on	the
		left is F 0, w	hich represents the most recent failure	
E11 Err	Fault log shows	2. Press the Up keyto display past faults one by one. PressENT key for		
1 1 1 .L11	raun log snows	along timeto display the fault occurrence time. Refer to d25.tiE for time		
		coordinate.		
		3. Press the M key to exit the mode.		
		Note: The fault occurred during multiple power-up and power-down within		
		30 minutes	may have a 30-minute deviation in its recording time.	
	Alarm record	1. Press the	M keyof the operation panel to switch to the auxiliary	
		mode F** , o	perate theUp/Down key toF12.clr, press theENT key, the	:
F12.clr	clearing	panel displaysclr.Er, and press theENT key to clear the alarm information		
	clearing	recorded inF11.Err.		
		2. Press the	M key to exit the mode.	
		1. Press the	M keyof the operation panel to switch to the auxiliary	
		modeF**, operate theUp/Down key toF13.unL, and press theENT key to		
	Operation	edit the operation authority. 0: Parameters cannot be modified;1:		
F13.unL	authority setting	Parameters can be modified (except system parameters); 2: All visible		
	autionity setting	parameters can be modified; Set the value of 0,1, and save when power is		
		off. When s	etting 2, it will not be saved after power failure.	
		2. Press the	M key to exit the mode.	
		1. Press the	M key of the operation panel to switch to the auxiliary mo	de
F14 out	Force output port	F**, and operate the Up/Down key to F14. out, press ENT key to force		
F14. Out	level	output port level through Up/Down key. The corresponding relation with		
		the output p	ort is that the four vertical bars of the operation panel from	ı right

		to left respectively correspond to DO1-DO4		
		2. Press the M key to exit the mode.		
		1. Press the M keyof the operation panel to switch to the auxiliary		
F17.rES	software reset	modeF**, operate theUp/Down key toF17.rES, press theENT key, the		
	software reset	panel displays rESEt, and press the ENT key to perform software reset.		
		2. Press the M key to exit the mode.		
		1. Press the M key on the operation panel to switch to the auxiliary mode		
		F**, operate the Up/Down key to F18.PJG, and press the ENT key to		
		execute the program J OG function.		
E19 DIC	Des servers LOC	2. Press the UP key or DOWN key, and the motor will operate according to		
F18.FJG	Program JOG	the operating conditions set in P08-06~ P08-12.		
		3. Press the M key to exit the mode.		
		Note: this mode can only be operated underrdy, otherwise the driver		
		will alarm A.905		
		1. Press the M keyof the operation panel to switch to the auxiliary		
		modeF**, operate theUp/Down key toF19.J-L, press theENT key to enter		
	Load inertia ratio	the load inertia measurement function, the panel displays 1.00, and		
		pressthe ENT key for a long time, the panel displays-1.00		
		2. Press the UP key, the motor will run back and forth according to the		
F19.J-L		number of turns set by P08-02, the maximum speed set by P08-03, the		
		acceleration and deceleration time set by P08-04 and the waiting time set		
	measurement	by P08-05, until the flashing load inertia ratio appears.		
		3. Press ent to save directly to P01-04, or record the value to exit and write		
		to parameter P01-04		
		4. Press the M key to exit the mode		
		Note: this mode can only be operated underrdy, otherwise the driver		
		will alarm A.905		
		1. Press the M key of the operation panel to switch to the auxiliary mode		
		F**, and operate the Up/Down key to F21. Fft, press ENT key to identify		
	Identification of	resonance frequency (command is sent from driver); Long press ENT key		
	resonant	panel display-F.00, press UP or DOWN key, the driver will automatically		
501 50	frequency	detect the resonance frequency, the number is the frequency		
F21.Fft	(commanded	2. Pressing ent will save directly to P08-30, or record the value to exit and		
	internally in the	write to parameter P08-30		
	driver)	3. Press the M key to exit the mode		
		Note: this mode can only be operated underrdy, otherwise the driver		
		will alarm A.905		

		1. Press the M key of the operation panel to switch to the auxiliary mode
		F**, and operate the Up/Down key to F22. Fr, pressENT key to enter the
		detection of resonance frequency (customer operation), the panel
	Detect resonant	displays-F.00, press UP or DOWNkey, the panel displays F flashing, the
F22.Fr	frequency (in	driver will detect the resonance frequency within 20S, the number is the
	customer	frequency
	operation)	2. Pressing ent will save directly to P08-30, or record the value to exit and
		write to parameter P08-30
		3. Press the M key to exit the mode
		Note: this mode can only be operated whenthe device is running

Chapter IX Fault Analysis and Treatment

Alarm Type	serial number code	Alarm content
	E. 051	EEPROM parameter abnormal
	E. 052	FPGA communication exception
	E. 053	initial failure
	E. 054	operation timeout
	E. 060	Hardware match exception
	E. 061	Abnormal motor and driver combination
	E. 063	overcurrent detection
	E. 064	Motor overcurrent detection
	E. 068	Driver DC bus overcurrent detection
hardware	E. 069	FPGA clock exception
failure	E. 071	Abnormal detection of phase U current
	E. 072	Abnormal detection of phase W current
	E. 100	Abnormal parameter combination
	E. 102	DI port assignment exception
	E. 106	Abnormal setting of divider output
	E. 107	parameter anomaly
	E. 108	Parameter setting out of range
	E. 120	Servo ON command invalid alarm
	E. 121	External input alarm signal
	E. 305	Motor cable broken
	E. 400	Loss of phase in power line

9.1 Fault alarm information table

	E. 401	undervoltage	
	E. 402	overvoltage	
	E. 410	instantaneous overload	
	E. 412	sustained overload	
	E. 420	Motor overspeed	
operational	E. 421	out-of-control detection	
failure	E. 430	regeneration anomaly	
	E. 431	regenerative overload	
	E. 435	surge current limit resistor overload	
	E. 436	DB overload	
	E. 440	Drive Temperature Abnormal	
	E. 501	Excessive position deviation	
	E. 503	Excessive position deviation when servo is ON	
	E. 510	The gantry position deviation is too large	
	E. 511	Gantry shaft alarm	
	E. 520	vibration alarm	
	E. 521	Self-adjusting vibration alarm	
	E. 620	Encoder off line	
	E. 621	Encoder built-in data mismatch	
	E. 622	Encoder built-in data verification error	
	E. 641	Encoder overheating (inside encoder)	
Encoder failure	E. 643	Encoder battery voltage fault (encoder internal)	
	E. 644	Encoder multi-turn data exception (inside encoder)	
	E. 645	Encoder Multiturn Count Overflow (Encoder Internal)	
	E. 646	Encoder communication failure	
	E. 649	Encoder communication CRC failure	
	A.900	Excessive position deviation	
Warning	A.901	Excessive position deviation when servo is ON	

A.905	Auxiliary (F**) function cannot be executed when servo is ON
A.910	overload
A.911	vibration
A.912	Abnormal temperature of control board
A.913	Drive Temperature Abnormal
A.920	regenerative overload
A.921	DB overload
A.923	Servo unit internal fan stops
A.930	Encoder Battery Low Voltage
A.941	Parameter changes that require power reconnection
A.942	EEPROM write failure
A.950	overtravel
A.960	Input terminal duplicate definition
A.971	undervoltage
A.995	Advanced accessibility dysfunction

9.2 Fault alarm cause and treatment

E.051: EEPROM Parameter Abnormal

Fault alarm reason	Fault alarm check	disposal measures
Servo unit EEPROM data	Perform factory initialization	If it persists, replace the drive
exception	(F10.INI)	

E.052: FPGA Communication Exception

Fault alarm reason	Fault alarm check	disposal measures
Abnormal power-on initialization	Power back on	Alarm is switched off by setting
of main control MCU		parameter Pn044
		If it persists, replace the drive

E.053: Initialization Failure

Fault alarm reason	Fault alarm check	disposal measures
Power-on initialization failure of	Power back on	If it persists, replace the drive

master MCU	

E.054: Operation Timeout

Fault alarm reason	Fault alarm check	disposal measures
operation timeout	Power back on	If it persists, replace the drive

E.060: Hardware mismatch error

Fault alarm reason	Fault alarm check	disposal measures
Hardware mismatch error	Perform factory initialization	If consistently, contact
	(F10.INI)	manufacturer

E.061: Motor and drive combination anomaly

Fault alarm reason	Fault alarm check	disposal measures
The servo unit does not match the	Check whether the servo unit	Replace the servo unit matching the
servo motor model	supports the motor	motor

E.063: Overcurrent detection

Fault alarm reason	Fault alarm check	disposal measures
Short circuit between U,V and W	Is there a short circuit in the U,V,W	correct wiring
	wiring	If there is no alarm, check the
	Is there a short circuit between B 1	power line and motor for short
	and B 3	circuit
Damaged drive	Disconnect the U,V,W cables on the	If the U,V,W connections are
	drive and enable the drive	disconnected and the startup drive
		still alarms, replace the drive

E.064: Motor overcurrent detection

Fault alarm reason	Fault alarm check	disposal measures
Short circuit between U,V and W	Is there a short circuit in the U,V,W	correct wiring
	wiring	If there is no alarm, check the
	Is there a short circuit between B 1	power line and motor for short
	and B 3	circuit
Damaged drive	Disconnect the U,V,W cables on the	If the U,V,W connections are
	drive and enable the drive	disconnected and the startup drive
		still alarms, replace the drive

E.068: Driver DC Bus Overcurrent Detection

Fault alarm reason	Fault alarm check	disposal measures
U,V,W short to earth PE	Check for correct wiring	Correct wiring, replace motor wire
	Try to remove the motor power line	and motor.
		If it persists, replace the drive

E.069: FPGA Clock Exception

Fault alarm reason	Fault alarm check	disposal measures
FPGA clock exception	FPGA clock exception	P00-47.1 Set 0 to turn off alarm
		If it persists, replace the drive

E.071: U-phase current detection abnormality

Fault alarm reason	Fault alarm check	disposal measures
Abnormal sampling data of	Check whether the UVW wiring is	correct wiring
current sensing device	correct and the connection is	P00-46.2 Set 0 to turn off alarm
	reliable	If it persists, replace the drive

E.072: Abnormal detection of phase W current

Fault alarm reason	Fault alarm check	disposal measures
Abnormal sampling data of	Check whether the UVW wiring is	correct wiring
current sensing device	correct and the connection is	P00-46.3 Set 0 to turn off alarm
	reliable	If it persists, replace the drive

E.100: Abnormal parameter combination

Fault alarm reason	Fault alarm check	disposal measures
Parameter setting error	Check the set parameters	Set parameters correctly
		If it always appears, initialize the
		parameters

E.102: DI Port Assignment Exception

Fault alarm reason	Fault alarm check	disposal measures
At least 2 input ports have the	Check input port function selection	Set parameters correctly
same function selection	parameters (P06-11, P06-12)	Perform parameter initialization
		and power on again

E.106: Abnormal setting of frequency division pulse output

Fault alarm reason	Fault alarm check	disposal measures
Divided pulse output parameter	Check the divided pulse output	Correct setting of frequency

setting out of range	setting parameters. P03-25	division pulse output parameters
		Bus encoder P03-25 65535
		Drive Power Back On

E.107: Abnormal parameters

Fault alarm reason	Fault alarm check	disposal measures
parameter anomaly	Check whether the parameter range	Set parameters correctly
	is reasonable	Execute parameter initialization

E.108: Parameter setting out of range

Fault alarm reason	Fault alarm check	disposal measures
Parameter setting out of range	Check whether the parameter range	Set parameters correctly
	is reasonable	Execute parameter initialization

E.120: Servo ON command invalid alarm

Fault alarm reason	Fault alarm check	disposal measures
When servo is ON, power supply	Check wiring and input voltage	Check wiring
input ports L1, L2 and L3 are not		Drive Power Back On
supplied with power		

E.121: External input alarm signal

Fault alarm reason	Fault alarm check	disposal measures
External input alarm signal	Check whether there is signal input	Correct use of external input alarm
	at the external input port and	IO signals
	whether the relevant parameters of	
	I/O port are correct	

E.305: Broken motor cable

Fault alarm reason	Fault alarm check	disposal measures
Motor cable broken	Check whether the UVW wiring is	Ensure UVW wiring is correct and
	correct and the connection is	reliable
	reliable	P00-47.0 Set 0 to turn off alarm

E.400: Power cord phase loss

Fault alarm reason	Fault alarm check	disposal measures
Main circuit input power line	Check whether the main circuit	Make sure that the wiring is correct
phase loss	input L1,L2 and L3 are connected	and that the correct voltage source
		or voltage regulator is used in
		series
		P00-39.0 Open phase alarm can be
		turned off

E.401: Undervoltage

Fault alarm reason	Fault alarm check	disposal measures
The input voltage of the main	Check whether the main circuit	Make sure that the wiring is correct
circuit is lower than the rated	input L1,L2,L3 wiring is correct,	and that the correct voltage source
voltage value or there is no input	and the voltage value is how many	or series regulator is used
voltage	volts. The bus voltage can be	P00-52 Alarm threshold can be
	monitored via d23.dcp	modified

E.402: Overvoltage

Fault alarm reason	Fault alarm check	disposal measures
Main circuit input voltage is too	Use voltmeter to test whether the	Use the correct voltage source or
high	input voltage of main circuit is	series regulator
	correct	
The regenerative resistor is not	Check that the appropriate	Properly connected matching
connected or the type selection of	regeneration resistor is connected	regenerative resistors
the regenerative resistor is		
incorrect		
Incorrect parameter settings	Confirm that the parameter settings	Correct setting of parameters and
	of P00-30~P00-34 are consistent	external regenerative resistance
	with the resistor connection mode	
Drive hardware failure	Overvoltage alarm still occurs	Please send it back to the dealer or
	when the input voltage is	the original factory for maintenance
	determined to be correct	

E.410: Instantaneous overload

Fault alarm reason	Fault alarm check	disposal measures
The machine is stuck when the	Check mechanical connections for	Adjust the mechanical structure

motor is started	binding	
P00-50 Parameter setting is	Check P00-50 parameter value	Set P00-50 parameters correctly
unreasonable		
Drive hardware failure	Confirm that the mechanical part is	Please send it back to the dealer or
	normal and still alarm	the original factory for maintenance

E.412: Sustained overload

Fault alarm reason	Fault alarm check	disposal measures
Continuous use beyond the drive	Can be monitored via d13.oL. in	Change to a higher power motor or
rated load	monitor mode	reduce the load
Improper setting of control	1. Whether the mechanical system	1. Adjust the gain of control loop
system parameters	is installed	2. Acceleration and deceleration
	2. Acceleration setting constant is	setting time slows down
	too fast	
	3. Whether the gain parameters are	
	set correctly	
Motor wiring error	Check U, V, W wiring	correct wiring

E.420: Overspeed

Fault alarm reason	Fault alarm check	disposal measures
Input speed command too high	Check whether the input signal is	Adjust the frequency of the input
	normal	signal
Unreasonable setting of overspeed	Check whether P04-05 (overspeed	Set P04-05 correctly (overspeed
judgment parameters	alarm value) is set properly	alarm value)

E.421: Out of control detection

Fault alarm reason	Fault alarm check	disposal measures
Motor power lines U,V,W wiring	Check wiring	correct wiring
error		
Incorrect motor parameter setting	Check P00-05; and whether the	Set parameters correctly
	encoder parameters are set correctly	Set P00-46.1 to 0 to close runaway
		detection

E.430: Regeneration Abnormal

Fault alarm reason	Fault alarm check	disposal measures
Wrong selection of regenerative	Check the connection of the	If the connection is normal, return
resistor or no external	regenerative resistor	the drive to the factory for repair
regenerative resistor		P00- 44.2 canbe set to 0 to turn off
		the alarm
Parameter setting error	Please confirm theparameter setting	Set parameter values correctly
	ofP00-30~P00-34	

E.431: Regeneration Overload

Fault alarm reason	Fault alarm check	disposal measures
Wrong selection of regenerative	Check the connection condition of	Select the appropriate regenerative
resistor or no external	the regenerative resistor and	resistor
regenerative resistor	whether the resistance and power of	
	the regenerative resistor are suitable	
Incorrect parameter setting	Confirm whether the parameters	Set parameter values correctly
	P00-30~P00-35 are correct	

E.435: Surge current limiting resistor overload

Fault alarm reason	Fault alarm check	disposal measures
Frequent power-up of drive power		P00-44 can be set to turn off the
supply		alarm

E.436: DB Overload

Fault alarm reason	Fault alarm check	disposal measures
Motor driven by external force	Confirm running status	Do not use excessive external force
(rdy state)		to push
		P00- 46 can be set to turn off the
		alarm
DB, the rotational energy is	Check motor running speed	Reduce servo motor command
greater than the DB resistance	Evaluate whether the load inertia is	speed
capacity	too large	Reduce the load moment of inertia
		Reduce the number of DB stops

E.440: Radiator Overheated

Fault alarm reason	Fault alarm check	disposal measures
Drive internal temperature above	Check that the drive is in good	Improve the heat dissipation
P00-41 setpoint	thermal condition	condition of the drive. If the alarm

		still occurs, please return the drive
		to the factory for maintenance.
Overheat alarm threshold setting	Check parameter P00- 41	Set P00- 41
is too small		

E.501: Excessive positional deviation

Fault alarm reason	Fault alarm check	disposal measures
Too large position deviation, too	Confirm parameter setting of P0	Increase the setting of P0 3-15
small setting parameter	3-15 (excessive position deviation	(excessive position deviation
	setting)	setting)
Gain value set too small	Confirm whether the gain	Readjust the gain class parameters
	parameters are set reasonably	correctly
Internal torque limit set too small	Confirm internal torque limit value	Readjust the internal torque limit
		correctly
Excessive external load	Check external load	Reduce the load or replace the
		high-power motor

E.503: Excessive position deviation when servo is ON

Fault alarm reason	Fault alarm check	disposal measures
Excessive position deviation when	Confirmparameter settingof P03-30,	Correctly set relevant parameters
servo is ON	P03-31 and P0 3-3 3	
Gain value set too small	Confirm whether the gain	Readjust the gain class parameters
	parameters are set reasonably	correctly
Internal torque limit set too small	Confirm internal torque limit value	Readjust the internal torque limit
		correctly
Excessive external load	Check external load	Reduce the load or replace the
		high-power motor

E.510: Excessive gantry position deviation

Fault alarm reason	Fault alarm check	disposal measures
The gantry position deviation is	Confirm P03-53 parameter setting	Set parameter values correctly
too large		
Gain value set too small	Confirm whether the gain	Readjust the gain class parameters
	parameters are set reasonably	correctly
Internal torque limit set too small	Confirm internal torque limit value	Readjust the internal torque limit
		correctly

Excessive external load	Check external load	Reduce the load or replace the
		high-power motor

E.511: Gantry shaft alarm

Fault alarm reason	Fault alarm check	disposal measures
Two-axis drives, P 00-39, have an	Check whether each axis gives an	Perform alarm (other alarms)
axis associated alarm set and one	alarm	troubleshooting
axis alarm.		
Two-axis drive, open gantry	Check whether each axis gives an	Perform alarm (other alarms)
function, one of the axis alarm	alarm	troubleshooting

E.520: Vibration Alarm

Fault alarm reason	Fault alarm check	disposal measures
Abnormal vibration of motor	Confirm the abnormal sound of the	Reduce the motor speed.
speed detected	motor and the speed and torque	Or reduce the speed loop gain
	waveform during operation.	(P02-10)
The value of the moment of	Confirm the load moment of inertia	Set the appropriate ratio of moment
inertia ratio (P01-04) is larger than	ratio	of inertia (P01-04)
the actual value or varies greatly		P01-10 can be set to turn off the
		alarm

E.521: Self-adjusting vibration alarm

Fault alarm reason	Fault alarm check	disposal measures
The motor vibrates greatly when	Confirm the waveform of the motor	Decrease the load moment of
using the adjustment-free function	speed.	inertia ratio below the allowable
(factory setting)		value, or increase the tuning value
		of the adjustment free value setting
		(Fn200), or decrease the gain value.
Motor vibration is high when	Confirm the waveform of the motor	The processing method described
performing advanced auto tuning,	speed.	in the operation procedure for
single parameter tuning, EasyFFT		implementing each function

E.620: Encoder Off Line

Fault alarm reason	Fault alarm check	disposal measures
Bus encoder communication	Check Encoder Wiring	correct wiring

failure	

E.621: Encoder built-in data mismatch

Fault alarm reason	Fault alarm check	disposal measures
Encoder read/write exception	Check the encoder wiring.	correct wiring
Abnormal motor parameter setting	Correctly set the motor parameters	Set parameters correctly
	of P00-00~ P00-19	

E.622: Encoder built-in data check error

Fault alarm reason	Fault alarm check	disposal measures
Encoder built-in data verification	Check Encoder Wiring	If the connection is normal, return
error	Verify encoder shield wire is	the drive to the factory for repair
	properly connected	

E.641: Encoder overheating (encoder internal)

Fault alarm reason	Fault alarm check	disposal measures
Encoder overheating (inside	Check encoder temperature	If the temperature is normal, the
encoder)		alarm can be cleared by F06.EN0
		Modify parameter P00-07.2 Alarm
		Off

E.643: Bus Encoder Battery Failure

Fault alarm reason	Fault alarm check	disposal measures
Low external battery voltage	Check the voltage of the external	When the battery voltage is lower
when bus encoder is set to	battery of the encoder and confirm	than 3.0V, replace the battery.
multi-turn absolute value	that it is higher than 3.0V	Alarm cleared above 3V using
		auxiliary function F06.EN0
		Alarm can be switched off via
		parameter P00-07

E.644: Bus Encoder Multi-turn Exception

Fault alarm reason	Fault alarm check	disposal measures
Bus encoder turns out of range	The number of turns can be	Clear the multi-turn value using the
	monitored through the monitoring	command F07.En1
	mode d21.ASH, and the multi-turn	
	absolute motor cannot rotate in one	
	direction for a long time.	

E.645: Bus Encoder Multiturn Overflow Fault

Fault alarm reason	Fault alarm check	disposal measures
Bus encoder turns out of range	The number of turns can be	Alarm can be cleared via F06.EN0
	monitored through the monitoring	Clear the multi-turn value using the
	mode d21.ASH, and the multi-turn	command F07.En1
	absolute motor cannot rotate in one	Alarm can be switched off via
	direction for a long time.	parameter P00-07

E.646: Encoder communication failure

Fault alarm reason	Fault alarm check	disposal measures
Encoder communication failure	Check Encoder	Correct installation of encoder

E.649: Encoder Communication CRC Failure

Fault alarm reason	Fault alarm check	disposal measures
Encoder communication CRC	Check Encoder	Correct installation of encoder
failure		

A.900: Excessive positional deviation

Fault alarm reason	Fault alarm check	disposal measures
Excessive position deviation	Confirm parameter setting of	Increase P03-15/P03-30 (excessive
warning	P03-15/P03-30 (excessive position	position deviation setting) setting
	deviation setting)	
Gain value set too small	Confirm whether the gain	Readjust the gain class parameters
	parameters are set reasonably	correctly
Internal torque limit set too small	Confirm internal torque limit value	Readjust the internal torque limit
		correctly
Excessive external load	Check external load	Reduce the load or replace the
		high-power motor

A.901: Excessive position deviation when servo is ON

Fault alarm reason	Fault alarm check	disposal measures
Excessive position deviation when	Confirm P03-31/P03-33 parameter	Increase P03-31/P03-33 setpoint
servo is ON	setting	
Pulse command frequency is too	Pulse command frequency is too	Reduce the pulse command
high when servo is ON	high when servo is ON	frequency when servo is ON

A.905: FN function cannot be executed when servo is ON

Fault alarm reason	Fault alarm check	disposal measures
FN function cannot be executed	FN function cannot be executed	Perform FN function with SV-OFF
when servo is ON	when servo is ON	

A.910: Overload warning

Fault alarm reason	Fault alarm check	disposal measures
overload warning	Can be monitored via d13.oL. in monitor mode	Increase P00-51 (overload warning value) appropriately
Improper setting of control system parameters	 Whether the mechanical system is installed Acceleration setting constant is too fast Whether the gain parameters are set correctly 	 Adjust the gain of control loop Increase the acceleration and deceleration time
Motor wiring error	Check U, V, W wiring	correct wiring

A.911: Vibration Warning

Fault alarm reason	Fault alarm check	disposal measures
Abnormal vibration of motor	Confirm the abnormal sound of the	Reduce the motor speed.
speed detected	motor and the speed and torque	Or reduce the speed loop gain
	waveform during operation.	(P02-10)
The value of the moment of	Confirm the load moment of inertia	Set the appropriate ratio of moment
inertia ratio (P01-04) is larger than	ratio	of inertia (P01-04)
the actual value or varies greatly		P01-10 can be set to turn off the
		alarm

A.912: Abnormal Control Board Temperature

Fault alarm reason	Fault alarm check	disposal measures
Abnormal temperature of control	Check Drive Temperature	improve heat dissipation condition
board	Does the cooling fan work properly	of that drive
		Drive temperature still alarms
		under normal conditions, replace
		the drive

A.913: Abnormal Drive Temperature

Fault alarm reason	Fault alarm check	disposal measures
Overtemperature warning set too	Confirm whether parameter P00-42	Set P00-42 correctly
low	is set properly	
Drive Temperature Abnormal	Drive temperature monitoring can	improve heat dissipation condition
	be performed via d24.Ath in	of that drive
	monitor mode	Drive temperature still alarms
		under normal conditions, replace
		the drive

A.920: Regeneration Overload Warning

Fault alarm reason	Fault alarm check	disposal measures
Wrong selection of regenerative	Check the connection condition of	Select the appropriate regenerative
resistor or no external	the regenerative resistor and	resistor
regenerative resistor	whether the resistance and power of	
	the regenerative resistor are suitable	
Incorrect parameter setting	Confirm whether the parameters	Set parameter values correctly
	P00-30~P00-35 are correct	

A.930: ABSOLUTE ENCODER BATTERY FAULT

Fault alarm reason	Fault alarm check	disposal measures
ABSOLUTE ENCODER	Check the voltage of the external	Battery voltage is lower than 3.0V,
DATTEDY FALLT	battery of the encoder and confirm	replace battery
DATIERTIAOEI	that it is higher than 3.0V	Clear with command F06.En0 if
		higher

A.941: Parameter changes require power off and restart to take effect

Fault alarm reason	Fault alarm check	disposal measures
After modifying the parameters,	After modifying the parameters, the	Power off and restart
the parameters shall take effect	parameters shall take effect after	
after re-powering on	re-powering on	

A.960: Input Terminal Duplicate Definition

Fault alarm reason	Fault alarm check	disposal measures
Input terminal duplicate definition	Check whether there is signal input	Correctly set relevant parameters
	at the external input port and	
	whether the relevant parameters of	

A.971: Undervoltage warning

Fault alarm reason	Fault alarm check	disposal measures
The input voltage of the main	Check whether the main circuit	Make sure that the wiring is correct
circuit is lower than the rated	input L1,L2,L3 wiring is correct,	and that the correct voltage source
voltage value or there is no input	and the voltage value is how many	or voltage regulator is used in
voltage	volts. The bus voltage can be	series
	monitored via d23.dcp	P00-52 Alarm threshold can be
		modified or alarm can be turned off

Chapter X Communication

10.1 Modbus communication parameter setting

paramete r code	Name	Description	
P00-23	slave address	Setting range: 0-255, default 1 Set according to equipment requirements	
P00-24.0	Modbus	Setting range: 0-7, default 2	

	communication baud	0: 2400
	rate	1: 4800
	Tuto	2: 9600
		3: 19200
		4: 38400
		5: 57600
		6: 115200
		7: 25600
		Setting range: 0-3, default 0
		0: no check, 2 stop bits
P00-24.1	check mode	1: even parity, 1 stop bit
		2: Odd parity, 1 stop bit
		3: No check, 1 stop bit
		Setting range: 0-100, default 0
Modbus		When the parameter is set to 0, the response is made according to the
P00-26	communication	standard communication. When the parameter is set to have a value, the
	response delay	response time of Modbus communication is made according to the set
		time

$10. \ 2$ Modbus communication supports reading and writing parameter setting

monitorin	Definition	Unit of	Decimal communication address
g item		Measure	(double address, high order first)
d00. C. PU	position command pulse	instruction	2100-2101
	sum	unit	

Support reading monitoring project address list

d01. F. PU	Position feedback pulse	instruction	2102-2103
	summation	unit	
d02. E. PU	position deviation	instruction	2104-2105
		unit	
d03. C. PE	position command pulse	encoder	2106-2107
	sum	unit	
d04. F. PE	Position feedback pulse	encoder	2108-2109
	summation	unit	
d05. E. PE	position deviation	encoder	2110–2111
		unit	
d06. C. Fr	input pulse speed	Kpps	2112
d07. C. SP	speed command	rpm	2113
d08. F. SP	actual speed	rpm	2114
d09. C. tq	torque command	%	2115
d10. F. tq	actual torque	%	2116
d11. AG. L	average load factor	%	2117
d12. PE. L	actual peak torque	%	2118
d13. oL	cumulative load factor	%	2119
d14. rG	regenerative load	%	2120
	factor		
d15. PE. S	actual speed peak	rpm	2121
d16. I. Io	input signal monitor	binary	2122
		system	
d17. o. Io	output signal	binary	2123
	monitoring	system	
d18. AnG	mechanical angle	0.1	2124
		degree	
d19. HAL	electrical angle	0.1	2125

		degree	
d20. ASS	Absolute encoder position within one		2126-2127
	turn		
d21. ASH	Absolute encoder turns		2128
d22. J-L	inertia ratio	1%	2129
d23. dcp	DC bus voltage value	1Vdc	2130
d24. Ath	Drive Temperature	degree	2131
		centigrade	
d25.tiE	cumulative running time	second	2132-2133
d26. 1. Fr	Vibration frequency 1	Hz	2134
d28. 2. Fr	Vibration Frequency 2 (End	Hz	2136
	Jitter Frequency)		
d29. cn	Current Control Mode		2137
d30.Ai1	Speed command input	0. 001V	2138
	value		
d31.Ai2	Torque command input	0.001V	2139
	value		
d32. c. Er	Number of abnormal		2140
	communication of encoder		
d33. H1	Hardware model		2141
	(hardware information)		
d34. H2	Hardware Version		2142
d35. S1	Software Version		2143
d36. C. PU	position command pulse	instruction	2144-2145
	sum	unit	
d37. F. PU	Position feedback pulse	instruction	2146-2147
	summation	unit	
Current			2180

Fault		
Number		

Note: 1. All parameters support 485 reading. Refer to parameter code for parameter read-write address: For example, p 03 -09, read and write addresses are decimal 309

2. Parameter write reference drive permission settings. For example, if the current permission level of the drive is 1, parameters higher than permission 1 cannot be written. Parameter writing is not saved when power is off.

10.3 Overview of Modbus Communication Protocol

10.3.1 Introduction

The Nexus Monitor communicates with other devices using the RTU transfer mode of the AEG Modicon Modbus protocol. This communication applies to both RS-232 and RS-485 standards.

- RS-232 communication requires a single connection between a Nexus Monitor and one other device, using only channel 1 of the Nexus Monitor.
- RS-485 supports multiple Nexus monitors connected to a single network and is a two-wire connection up to 115200 baud with ports 1-4 available.

10.3.2 Communication Package

Communication occurs between a Modbus master and one or more Nexus slaves. The master initiates all communication by sending a "request packet" to the designated slave, which replies with a "reply packet". The communication packet consists of a string of 8-bit bytes, as follows:

- Slave address, one byte
- Function code, one byte
- Data, N bytes, high byte first, low byte later
- CRC (RTC Error Detection Code), 2 bytes
- Dead time, 3.5 byte transfer time.

A maximum of 127 registers can be sent in a single communication packet.

10.3.3 Slave Addresses and Sending Requests

Each slave device on the communication bus has its own dedicated address and responds only to addresses addressed by the master. The packet returned to the master has the same address in the slave address field as the request packet. These addresses are programmable and range from 0 to 255.

Slave address 0 is a transfer command that allows the master to send the same packet to all devices at once. All slaves follow the packet's instructions but do not respond. The transfer request is only useful for functions 6 and 10, which represent the presetting of a single register and the presetting of multiple registers, respectively. See Tables 1.3 and 1.4.

10.4 function number

The function number of a packet tells the addressed slave what action to perform. Nexus supports the following Modus feature numbers.

function number		Desc
hexadecimal	decimal system	
03Н	3	read hold register
06Н	6	Preset a single register
10H	16	Preset multiple registers

Table 1.1 function number

10.4.1 Function No. 03: read hold register

This feature allows the master to read one or more parameter values (data registers) from a Nexus slave. This data register is a 16-bit value that is transmitted in the "Big Endian" format. The high byte is read first and the low byte is read later.

BIG-ENDIAN means that the low order bytes are arranged at the low end of memory and the high order bytes are arranged at the high end of memory

The master sends a packet defining a start register and the number of registers to read for

the slave. The slave responds with a packet containing the requested parameter values within the range specified in the original request.

In the following example, the master device requests a slave at 01 to send the values in two registers, the start register being 00001, and the slave replies with the values 3031H and 3037H from registers 00001 and 00002.

Host send format:

Slave Address Function No. Data Start Address Number of Data Read CRC

Slave sending format:

Slave Address Function Number Bytes Value of each data CRC

host package	hexadecimal	Slave Package Definition	hexadecimal address
definition	address		
slave address	01H	slave address	01H
function number	03Н	function number	03Н
Data start address high	ООН	Number of bytes	04H
byte			
Data start address low	01H	Data 1 High Byte	30H
byte			
Register Number High	ООН	Data 1 Low Byte	31H
Byte			
Register Number Low	02H	Data 2 High Byte	30H
Byte			
CRC Low Byte	95H	Data 2 Low Byte	37H
CRC High Byte	СВН	CRC Low Byte	F1H
		CRC High Byte	2AH

Table 1.2 Function Number 03 Example

10.4.2 Function No. 06: Adjust a single register

This feature allows the master to modify a single register on the Nexus slave, the data register

is a 16-bit value, the high byte is transferred first, the low byte is transferred later. In the following example, the master device saves the value 0001H in register 57346 (E002) on the Nexus slave with address 01H.

Host send format:

Slave Address Function Number Data Start Address Data Value CRC

Slave sending format:

Slave Address Function Number Data Start Address Data Value CRC

host package definition	hexadecimal	Slave Package Definition	hexadecimal address
	address		
slave address	01H	slave address	01H
function number	06H	function number	06H
Data start address high	ЕОН	Data start address high	ЕОН
byte		byte	
Data start address low	01H	Data start address low	01H
byte		byte	
data high byte	ООН	data high byte	ООН
data low byte	01H	data low byte	01H
CRC Low Byte	2EH	CRC Low Byte	2EH
CRC High Byte	OAH	CRC High Byte	OAH

Table 1.3 Function No. 6 Example

10.4.3 Function No. 10: adjustment register

This feature allows the master to modify a contiguous set of registers on the Nexus slave. The data register is a 16-bit value, with the high byte transferred first and the low byte transferred later.

In the following example, the master device stores the value 0001 H in register 57345, the value 0001 H in register 57346, and the value 0001 H in register 57347 in the Nexus slave with address 01H.

Host send format:

Slave Address Function Number Data Start Address Number of Modified Data First Data ······ CRC Slave sending format:

Slave Address Function Number Data Start Address Number of Modified Data CRC

10.4.4 Data start address

Hexadecimal range: 0000H-FFFFH

Decimal range: 0001-65535

For example, for some Scada software, to read the value in the save register, the address format should be 4 (XXXXX), where XXXXX is a decimal address.

Table 1.4 Function number 10 examples

host package definition	hexadecimal	Slave Package Definition	hexadecimal
	address		address
slave address	01H	slave address	01H
function number	10H	function number	10H
Data start address high byte	ЕОН	Data start address high byte	ЕОН
Data start address low byte	01H	Data start address low byte	01H
Setpoint Number High Byte	ООН	Setpoint Number High Byte	ООН
Setpoint Number Low Byte	03Н	Setpoint Number Low Byte	03Н
Number of bytes	06H	CRC Low Byte	E6H
Data 1 High Byte	ООН	CRC High Byte	08H
Data 1 Low Byte	01H		
Data 2 High Byte	ООН		
Data 2 Low Byte	01H		
Data 3 High Byte	ООН		
Data 3 Low Byte	01H		
CRC Low Byte	4DH		
CRC High Byte	46H		

10.5 dead time

If the Nexus slave is in a 3.5 byte transmit time (about 7ms at 4800 baud rate; 115200 baud rate is about 300us), it is considered that the data acceptance is completed. If the delay between the two bytes of the master is greater than this time, the slave considers it dead time. the conclusion from the dead time is that all unaddressed slaves must pay attention to new packets from the master.

10.6 Response of Exception Procedure

If the slave encounters an illegal command or other problem while executing the master command, it will send an exception response packet to the master. The exception response packet contains an error code to indicate the type of error.

The following table shows the error codes and the corresponding error types.

Error code	error type	Interpret
01	illegal	The slave does not support the function number in the request packet
	function	
	number	
02	illegal	The slave does not recognize the address of the data area in the
	address	transmitted request packet
03	illegal data	The data mentioned in the transfer request packet is not supported
		by registers in the Nexus slave
06	Busy, reject	The slave is busy performing a long operation and cannot receive
	package	the request packet

Table 1-5 Error Codes and Types

In the following example, the master device requests the value in register 00256 from the slave with address 01H, and the slave sends an error response message indicating that it is busy.

Table	16	Exception	Response	Example
TUDIC	1.0	LACOPTION	Response	LYambic

Host Package Meaning	hexadecimal	Slave Package Meaning	hexadecimal
	address		address
Addr	01H	Addr	01H

function number	03H	function number	03Н
Data start address high	01H	Error code	06Н
byte			
Data start address low byte	ООН	CRC Low Byte	С1Н
Number of Registers High	ООН	CRC High Byte	32Н
Byte			
Number of Registers Low	01H		
Byte			
CRC Low Byte	85H		
CRC High Byte	F6H		

Chapter 11 Instructions for Use of Special Functions

11.1 Absolute encoder use

11.1.1 Functional description

Using a servo motor with an absolute encoder, an absolute value detection system can be constructed by a host device. By means of the absolute value detection system, it is no longer necessary to perform the home point reset operation every time the power supply is turned on. This function reads the number of turns and position data of absolute encoder based on MODBUS communication, and the upper device performs processing control to realize the related functions of absolute encoder.
11.1.2 Basic setting and description of MODBUS-based communication servo

The system using absolute value encoder shall initialize the encoder battery alarm and rotation number data when it is put into use (F06.En0 clear encoder alarm; F07.En1 absolute encoder multi-turn value clearing). Because the motor body and the battery are disconnected before the first use, the encoder will have no battery alarm and loop memory function.

parameter code	Name	Note:
P00-23	slave address	Setting range: 0-255, default 1 Set according to equipment requirements
P00-24.0	Modbus communication baud rate	Setting range: 0-7, default 2 0: 2400 1: 4800 2: 9600 3: 19200 4: 38400 5: 57600 6: 115200 7: 25600
P00-24.1	check mode	Setting range: 0-3, default 0 0: no check, 2 stop bits 1: even parity, 1 stop bit 2: Odd parity, 1 stop bit 3: No check, 1 stop bit

11.1.3Absolute data address based on MODBUS

communication

Content	Address: decimal	Notes
Absolute encoder position within one	2126-2127	Single-turn value range: 0-8388608
turn		

Absolute encoder turns	2128	Multi-turn value range: 0-65535
------------------------	------	---------------------------------

11.1.4 Alarm handling related to absolute encoder

Alarm	Fault alarm reason	Fault alarm check	disposal measures
Code			
E.643	Low external battery voltage	Check the voltage of the	Replace the battery and clear the alarm
	when bus encoder is set to	external battery of the	with F06.EN0 (see chapter 8.4)
	multi-turn absolute value	encoder and confirm	
		that it is higher than	
		3.0V	
E.644	Abnormal reading of multi-lap	Check d21.ASH (see	If the multiturn value is greater than
E.645	data, or lap value exceeding \pm	chapter 8.3) multi-turn	32767, clear the multiturn data via
	32768	value	F07.EN1 (see chapter 8.4)
A.930	ABSOLUTE ENCODER	Check voltage of	Replace the battery and clear the alarm
	BATTERY FAULT	external battery of	with F06.EN0 (see chapter 8.4)
		encoder	

11.1.5 Absolute Encoder Battery Replacement

To avoid absolute position data loss, replace the battery if the drive is in any of the following situations.

1. When the driver displays A.930, it represents the low battery voltage warning. The battery must be replaced in time to avoid the loss of absolute position data of the motor. After replacing the battery, use the auxiliary function F06.EN0 to clear the alarm

2. When the driver displays E.643, it indicates that the battery voltage is low, and the number of motor turns cannot be recorded normally when this alarm occurs, and the battery must be replaced immediately. After the battery is replaced, the alarm is cleared using the auxiliary function F06.EN0 after the battery is replaced, and the origin of the device must be verified. At the same time, use the auxiliary function F07.EN1 to clear the motor multi-turn data

Note: It is recommended to replace the battery with the drive powered on to avoid loss of absolute position data

11.2 home reset function

11.2.1 Functional description

Origin: mechanical origin, which can indicate the position of origin switch or motor Z signal, and the specific setting is selected by P03-61.

Zero point: the positioning target point, which can be expressed as origin + offset(offset is set by P03-69).

WhenP03-69 is set to0, the zero point coincides with the origin.

The origin reset function refers to the function that the servo motor actively searches for zero point and completes positioning after the origin reset function is triggered when the servo enable is ON under the position control mode.

P0 3-60	Return to origin enable	Setting range: 0-6, default 0
	control	Set origin regression mode and trigger signal source
		0: Turn off the home reset function 1: Enable the home reset function
		by inputting the home reset start signal through DI 2: Enable the
		electrical zero return function by inputting the home reset start signal
		through DI 3: Start the home reset immediately after power-on 4:
		Start the home reset immediately 5: Start the electrical zero return
		command 6: Take the current position as the home point
P0 3-61	origin regression model	Setting range: 0-35, default 0
		Set the control signal source of zero return direction, deceleration
		point and origin during origin return operation
		0-35 Specific definitions Chapter 11.2.4 Description
P0 3-65	Speed when searching for	Setting range: 0-3000, default 100
	home switch_High speed	Set the origin to zero and search for the high speed value of the

11.2.2 Basic setting and description of servo

		deceleration point signal.
		The motor is always running at high speed P03-65 when electrically
		zeroed.
P0 3-66	Speed when searching for	Setting range: 0-1000, default 10
	home switch_low speed	Set the low-speed speed value when searching for the origin when the
		origin returns to zero.
		The speed setting should be low enough to prevent mechanical shock
		during shutdown.
P0 3-67	Search for origin switch	Set the time when the motor changes from 0 to 1000rpm at the time
	acceleration/deceleration	of home reset. Unit:MS
	time	
P0 3-68	Maximum time limit for	Limit the total time of home reset, and alarm AL.551(home reset
	searching origin	timeout fault) will occur if the time is exceeded.
P0 3-69	Mechanical origin offset	Setting range: -1073741823-1073741823, default:0 unit: instruction
		unit
		Set mechanical origin offset after origin reset
P06-11.01	DI1 Input Port Function	DI1 set to 1, servo ON
	Selection	
P06-13.01	DI3 Input Port Function	DI3 set to 3, positive overtravel signal input
	Selection	
P06-14.01	DI4 Input Port Function	DI4 set to 4, reverse overtravel signal input
	Selection	
P06-12.01	DI2 Input Port Function	DI2 set to 15, home switch signal
	Selection	
P06-15.01	DI5 Input Port Function	DI5 set to 16, start signal of home reset
	Selection	
P06-21.01	DI6 Input Port Function	DO1 is set to OD, and the signal of home reset completion
	· ·	

11.2.3 Precautions for use of zero point reset

If the deceleration point signal is valid, the origin signal is valid without sufficient deceleration, which may lead to unstable final positioning. The displacement required for deceleration shall be fully considered, and then the deceleration point and the origin signal input position shall be set. The acceleration/deceleration time (P03-67) when searching for the origin and the speed_high speed (P03-65) when searching for the origin switch also affect the positioning stability, and therefore should be considered when setting.

11.2.4 Block diagram of zero-return operation

Each return to zero mode has different track curves. Users can select the return to zero mode by setting the return to zero mode P03-61 according to their own needs.

Return to zero mode 1

When P03-61 = 1, select return to zero mode 1:

Take the CW direction end of CCW direction limit as reference point, and take the first Z signal in CW direction as zero point.

The motor firstly moves in CCW direction at the speed of P03-65 returning to the mechanical origin. When the limit in CCW direction is effectively activated, the motor moves in CW direction in reverse direction after deceleration and stop according to P03-67. When the motor leaves the

limit in CCW direction, the first Z signal is the zero origin.

Figure 1 Return to zero mode-track diagram

Return to zero mode 2

When P03-61 = 2, select return to zero mode II:

Take the CCW direction end of CW direction limit as reference point, and take the first Z signal in CCW direction as zero point.

The motor firstly moves in CW direction at the speed of P03-65 returning to the mechanical origin. When the limit in CW direction is effectively activated, the motor moves in CCW direction in reverse direction after decelerating and stopping according to P03-67. When the motor leaves the limit in CW direction, the first Z signal is the zero origin.

Figure 2 Schematic diagram of track of return to zero mode II

Return to zero mode3

When P03-61 = 3, select return to zero mode III:

Take the CCW direction end of HS limit as reference point, and the first Z signal in CCW direction as zero point.

The starting position is at the CCW direction side of HS limit: the motor firstly moves in CW direction at the speed of P03-65 returning to the mechanical origin. When HS limit is activated effectively, it will decelerate and stop according to the deceleration of P03-67, and then move in CCW direction in reverse direction. When it leaves HS limit, the first Z signal is the zero origin;

The starting position is onHS limit: the motor runs at low speed in CCW direction according to P03-66

, when leaving the HS limit, the first Z signal is the return to zero origin;

The starting position is at the CW direction side of HS limit: the motor first moves in CW direction at the speed of P03-65 returning to the mechanical origin. When it encounters the CW limit, it will reverse to CCW direction. After it encounters the HS limit, it will continue to run in CCW direction. When leaving the HS limit, the first Z signal is the return to zero origin.

Figure III Schematic diagram of three tracks of zero return mode

Return to zero mode 4

When P03-61 = 4, select return to zero mode IV:

Take the CCW direction end of HS limit as reference point, and the first Z signal in CW direction as zero point.

The starting position is at the side of HS limit CCW direction: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin. When the HS limit is effectively activated, the motor decelerates according to the deceleration of PO3-67, and it returns to the zero origin when it meets the first Z signal.

The starting position is on theHS limit: the motor runs at a low speed in CCW direction according to PO3-66. After leaving the HS limit, the motor runs at a low speed in CW direction. When the HS limit signal is activated again, the first Z signal is the zero origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin, and when it encounters the CW limit, it will reverse to CCW direction, and when it encounters and then leaves the HS limit, it will run in CW direction at low speed. When the HS limit signal is activated again, the first Z signal is the zero origin;

Figure 4 Schematic diagram of four tracks of zero return mode

Return to zero mode5

When P03-61 = 5, select return to zero mode 5:

Take the CW direction end of HS limit as reference point, and the first Z signal in CW direction as zero point.

The starting position is at theCCW direction side of HS limit: the motor first moves in CCW direction at the speed of P03-65 returning to the mechanical origin, and when encountering the CCW limit, it will reverse to CW direction. When the HS limit is activated, it will run at a reduced speed. After leaving the HS limit, the first Z signal is the zero origin;

The starting position is on theHS limit: the motor runs at low speed in CW direction according to P03-66, and when it leaves the HS limit, the first Z signal is the zero origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of P03-65 returning to the mechanical origin, and then decelerates to CW

square after activating HS limit. When leaving HS limit, the first Z signal is the zero origin;

Figure 5 Schematic diagram of five tracks of return to zero mode

Return to zero modeó

When P03-61 = 6, select return to zero mode VI:

Take the CW direction end of HS limit as reference point, and the first Z signal in CCW direction as zero point.

The starting position is at theside of HS limit in CCW direction: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin, and when it encounters the limit in CCW direction, it will reverse to CW direction. When HS limit is activated, it will decelerate. After leaving HS limit, it will run at low speed in CCW direction according to PO3-66. When HS limit is activated, the first Z signal is the zero origin;

The starting position is onHS limit: the motor runs at low speed in CW direction according to P03-66. After leaving HS limit, the motor runs at low speed in CCW direction. After activating HS limit, the first Z signal is the zero origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of PO3-65 returning to the mechanical origin, and after activating HS limit, the first Z signal is returning to the zero origin;

Figure 6 Schematic diagram of six tracks of zero return mode

When P03-61 = 7, select return to zero mode VII:

Take the CCW direction end of HS limit as reference point, and the first Z signal in CCW direction as zero point.

The starting position is at theCCW direction side of HS limit: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin. When the HS limit is activated, the motor decelerates and moves in CCW direction. After leaving the HS limit, the first Z signal is returning to the zero origin;

The starting position is on theHS limit: the motor runs at low speed in CCW direction according to P03-66, and when it leaves the HS limit, the first Z signal is the zero origin;

The starting position is atthe CW direction side of HS limit: the motor firstly moves in CW direction at the speed of P03-65 returning to the mechanical origin; after the CW limit is activated, the motor decelerates and runs in CCW direction; after the HS limit is activated, the motor runs in CCW direction at a low speed according to the setting of P03-66; when it leaves the HS limit, the first Z signal is the zero origin;

Figure 7 Schematic diagram of seven tracks of return to zero mode

When P03-61 = 8, select return to zero mode 8:

Take the CCW direction end of HS limit as reference point, and the first Z signal in CW direction as zero point.

The starting position is at theCCW direction side of HS limit: the motor moves at the speed of P03-65 to return to the mechanical origin in the CW direction first, and after the HS limit is activated, the first Z signal is the return to the zero origin;

The starting position is onHS limit: the motor runs at low speed in CCW direction according to P03-66; when it leaves HS limit, it runs at low speed in CW direction according to P03-66 in reverse direction; the first Z signal after activating HS limit is the zero origin;

The starting position is atthe CW direction side of HS limit: the motor firstly moves in CW direction at the speed of P03-65 returning to the mechanical origin; after CW limit is activated, the motor decelerates to CCW direction; after HS limit is activated, the motor runs in CCW direction at high speed; after leaving HS limit, the motor runs in CW direction at low speed according to P03-66; after HS limit is activated, the first Z signal is the zero origin;

Fig. 8 Schematic diagram of eight tracks in zero return mode

When P03-61 = 9, select return to zero mode 9:

Take the CW direction end of HS limit as reference point, and the first Z signal in CCW direction as zero point.

The starting position is at theside of HS limit CCW direction: the motor moves in CW direction at the speed of P03-65 returning to the mechanical origin. After the HS limit is activated and then left, the motor moves in CCW direction in reverse direction. When the HS limit is activated again, the first Z signal is the return to zero origin;

The starting position is onHS limit: the motor runs at low speed in CW direction according to P03-66; when it leaves HS limit, it runs at low speed in CCW direction according to P03-66 in reverse direction; the first Z signal after activating HS limit is the zero origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin. After CW limit is activated, the motor decelerates and moves in CCW direction. After HS limit is activated, the first Z signal is returning to the zero origin;

Figure 9 Schematic diagram of return to zero mode nine tracks

When P03-61 = 10, select return to zero mode X:

Take the CW direction end of HS limit as reference point, and the first Z signal in CW direction as zero point.

The starting position is at theside of HS limit CCW direction: the motor moves in CW direction at the speed of PO3-65 to return to the mechanical origin, and after the HS limit is activated and then left, the first Z signal is the return to the zero origin;

The starting position is on theHS limit: the motor runs at low speed in CW direction according to P03-66, and when it leaves the HS limit, the first Z signal is the zero origin;

The starting position is atthe CW direction side of HS limit: the motor firstly moves in CW direction at the speed of P03-65 returning to the mechanical origin; after CW limit is activated, the motor decelerates and runs in CCW direction; after HS limit is activated, the motor runs in CW direction in reverse direction; when the motor leaves HS limit, the first Z signal is the zero origin;

Figure 10 Return to zero mode ten track schematic diagram

When P03-61 = 11, select return to zero mode 11:

Take the CW direction end of HS limit as reference point, and the first Z signal in CW direction as zero point.

The starting position is at theside of HS limit CCW direction: the motor moves in CCW direction at the speed of P03-65 returning to the mechanical origin. After the CCW limit is activated, the motor decelerates to move in CW direction. After the HS limit is activated and then left, the first Z signal is the zero origin;

The starting position is on theHS limit: the motor runs at low speed in CW direction according to P03-66, and when it leaves the HS limit, the first Z signal is the zero origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of PO3-65 returning to the mechanical origin. After activating HS limit, it moves in CW direction in reverse direction. When leaving HS limit, the first Z signal is the zero origin;

Figure 11 Schematic diagram of eleven tracks of return to zero mode

When P03-61 = 12, select return to zero mode 12:

Take the CW direction end of HS limit as reference point, and the first Z signal in CCW direction as zero point.

The starting position is at the CCW direction side of HS limit: the motor firstly moves in CCW direction at the speed of PO3-65 returning to the mechanical origin; after CCW limit is activated, the motor decelerates to move in CW direction; after HS limit is activated and then left, the motor moves in CCW direction at low speed; after HS limit is activated, the first Z signal is the zero origin;

The starting position is onHS limit: the motor runs at low speed in CW direction according to PO3-66. After leaving HS limit, the motor runs at low speed in CCW direction. After activating HS limit, the first Z signal is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of PO3-65 returning to the mechanical origin, and after activating HS limit, the first Z signal is returning to the zero origin;

Fig.12 Schematic diagram of twelve tracks in return to zero mode

When P03-61 = 13, select return to zero mode 13:

Take the CCW direction end of HS limit as reference point, and the first Z signal in CW direction as zero point.

The starting position is at the CCW direction side of HS limit: the motor moves in CCW direction at the speed of P03-65 to return to the mechanical origin. After the CCW limit is activated, the motor decelerates to move in CW direction. After the HS limit is activated, the first Z signal is the zero origin;

The starting position is onHS limit: the motor runs at low speed in CCW direction according to P03-66. After leaving HS limit, the motor runs at low speed in CW direction. After activating HS limit, the first Z signal is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of PO3-65 returning to the mechanical origin, and then moves in CW direction at low speed after activating and leaving HS limit. After activating HS limit, the first Z signal is the zero origin;

Figure 13 Schematic diagram of thirteen tracks of zero return mode

When P03-61 = 14, select return to zero mode 14:

Take the CCW direction end of HS limit as reference point, and the first Z signal in CCW direction as zero point.

The starting position is at theCCW direction side of HS limit: the motor firstly moves in CCW direction at the speed of PO3-65 returning to the mechanical origin; after CCW limit is activated, the motor runs in CW direction in reverse direction; after HS limit is activated, the motor runs in CCW direction in reverse direction at low speed according to PO3-66; the first Z signal after leaving HS limit is the zero origin;

The starting position is on theHS limit: the motor runs at low speed in CCW direction according to P03-66, and when it leaves the HS limit, the first Z signal is the zero origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of P03-65 returning to the mechanical origin, and after activation and then leaving HS limit, the first Z signal is the zero origin;

Fig.14 Schematic Diagram of Fourteenth Track of Return to Zero Mode

The return to zero mode is reserved. When the return to zero mode is selected, there is no action.

Return to zero mode17

When P03-61 = 17, select return to zero mode 17:

The CW direction end limited in CCW direction is the zero point.

The starting position is on theCCW limit: the motor runs at low speed in CW direction according to PO3-66, and stops when it leaves the CCW limit, which is the zero return origin;

The starting position is atthe CW direction side of CCW limit: the motor first moves at the speed of P03-65 to return to the mechanical origin in the CCW direction, after the re-CCW limit is activated, the motor runs at a low speed in the CW direction according to the setting of P03-66, and stops when it leaves the CCW limit, which is the zero return origin;

Fig.15 Schematic diagram of seventeen tracks in return to zero mode

When P03-61 = 18, select return to zero mode 18:

The end in CCW direction limited by CW direction is zero point.

The starting position is on theCW limit: the motor runs at low speed in CCW direction according to P03-66, and stops when it leaves the CW limit, which is the zero return origin;

The starting position is at theside of CW limit in CCW direction: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin, and after activating CW limit again, it runs at low speed in CCW direction according to PO3-66, and stops when it leaves CW limit, which is the zero return origin;

Figure 16 Schematic diagram of eighteen tracks of return to zero mode

Return to zero mode19

When P03-61 = 19, select return to zero mode 19:

Take the CCW direction end of HS limit as zero point.

The starting position is at the CCW direction side of HS limit: the motor first moves in CW direction at the speed of PO3-65 to return to the mechanical origin, after the HS limit is activated, the motor runs at low speed in CCW direction according to PO3-66, and stops when it leaves the HS limit, which is the zero origin;

The starting position is on theHS limit: the motor runs at low speed in CCW direction according to P03-66, and stops when it leaves the HS limit, which is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor firstly moves in CW direction at the speed of PO3-65 returning to the mechanical origin; when the CW limit is activated, the motor moves in CCW direction in reverse; after the HS limit is activated, the motor decelerates and runs at low speed according to the setting of PO3-66; when it leaves the HS limit, it stops; this point is the zero return origin;

Figure 17 Schematic diagram of nineteen tracks of zero return mode

When P03-61 = 20, select return to zero mode 20:

Take the CCW direction end of HS limit as zero point.

The starting position is at theside of HS limit CCW direction: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin, and stops when HS limit is activated, which is the zero return origin;

The starting position is on theHS limit: the motor runs at low speed in CCW direction according to P03-66, and runs in CW direction in reverse direction after leaving the HS limit. When the HS limit is activated again, it stops, and this point is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor firstly moves in CW direction at the speed of PO3-65 returning to the mechanical origin. When CW limit is activated, the motor runs in CCW direction in reverse direction. After HS limit is activated, the motor decelerates and runs at low speed according to PO3-66. When it leaves HS limit, it runs in CW direction in reverse direction. When HS limit is activated again, it stops. This point is the zero return origin;

Figure 18 Schematic diagram of twenty tracks of zero return mode

When P03-61 = 21, select return to zero mode 21:

Take the CW direction end of HS limit as zero point.

The starting position is at theCCW direction side of HS limit: the motor first moves in CCW direction at the speed of P03-65 returning to the mechanical origin, when CCW limit is activated, it runs in CW direction in reverse direction, after HS limit is activated, it decelerates and runs at low speed according to P03-66 setting, and stops when it leaves HS limit, this point is the zero origin;

The starting position is on theHS limit: the motor runs at low speed in CW direction according to P03-66, and stops when it leaves the HS limit, which is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of PO3-65 returning to the mechanical origin, when the HS limit is activated, the motor runs at low speed in CW direction according to PO3-66, and stops when it leaves the HS limit, which is the zero return origin;

Fig.19 Schematic diagram of 21 tracks of return to zero mode

When P03-61 = 22, select return to zero mode 22:

Take the CW direction end of HS limit as zero point.

The starting position is at the CCW direction side of HS limit: the motor first moves in CCW direction at the speed of P03-65 returning to the mechanical origin. When the CCW limit is activated, the motor will run in CW direction in reverse. After the HS limit is activated, the motor will decelerate and run at low speed according to the setting of P03-66. After leaving the HS limit, the motor will run in CCW direction in reverse. When the HS limit is activated, the motor will stop. This point is the zero return origin.

The starting position is on theHS limit: the motor runs at a low speed in the CW direction according to P03-66. After leaving the HS limit, it runs in the CCW direction in the reverse direction. When the HS limit is activated, it stops. This point is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of P03-65 returning to the mechanical origin, and stops when HS limit is activated, which is the zero return origin;

Fig.20 Schematic Diagram of Twenty-two Trajectories in Return to Zero Mode

When P03-61 = 23, select return to zero mode 23:

Take the CCW direction end of HS limit as zero point.

The starting position is at theCCW direction side of HS limit: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin. After activating HS limit, it runs in CCW direction in reverse direction. When it leaves HS limit, it stops. This point is the zero return origin;

The starting position is on theHS limit: the motor runs at low speed in CCW direction according to P03-66, and stops when it leaves the HS limit, which is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor firstly moves in CW direction at the speed of PO3-65 returning to the mechanical origin; when the CW limit is activated, the motor runs in CCW direction in reverse; when the HS limit is activated, the motor runs at a reduced speed; when the motor leaves the HS limit, the motor stops; this point is the zero return origin;

Figure 21 Schematic diagram of 23 tracks of return to zero mode

When P03-61 = 24, select return to zero mode 24:

Take the CCW direction end of HS limit as zero point.

The starting position is at theside of HS limit CCW direction: the motor moves in CW direction at the speed of P03-65 returning to the mechanical origin, and stops when HS limit is activated, which is the zero return origin;

Starting position is onHS limit: it runs in CCW direction at low speed; when it leaves HS limit, it runs in CW direction in reverse direction; when HS limit is activated, it stops; this point is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor firstly moves in CW direction at the speed of PO3-65 returning to the mechanical origin; when the CW limit is activated, the motor runs in CCW direction in reverse; when the HS limit is activated, the motor runs in CCW direction at reduced speed; when the motor leaves the HS limit, the motor runs in CW direction in reverse; when the HS limit is activated, the motor runs in CW direction in reverse; when the HS limit is activated, the motor runs in CW direction in reverse; when the HS limit is activated, the motor runs in CW direction in reverse; when the HS limit is activated, the motor runs in CW direction in reverse; when the HS limit is activated, the motor stops; this point is the zero return origin;

Fig.22 Schematic Diagram of Twenty-four Trajectories of Return to Zero Mode

When P03-61 = 25, select return to zero mode 25:

Take the CW direction end of HS limit as zero point.

The starting position is at the CCW direction side of HS limit: the motor first moves in CW direction at the speed of P03-65 returning to the mechanical origin. After activating HS limit and then leaving, the motor reversely moves in CCW direction at the low speed set by P03-66, and stops when HS limit is activated. This point is the zero return origin;

Starting position is onHS limit: run in CCW direction at low speed; after leaving HS limit, run in CCW direction in reverse direction according to P03-66 to set low speed; stop when HS limit is activated, and this point is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin, and when the CW limit is activated, the motor moves in CCW direction in reverse direction, and stops when HS is activated. This point is the zero return origin;

Figure 23 Schematic diagram of 25 tracks of return to zero mode

When P03-61 = 26, select return to zero mode 26:

Take the CW direction end of HS limit as zero point.

The starting position is at theCCW direction side of HS limit: the motor first moves in CW direction at the speed of PO3-65 returning to the mechanical origin, after activating HS limit, decelerate to move in CW direction, and stop when leaving HS limit, this point is the zero return origin;

The starting position is on theHS limit: it runs in the CW direction at low speed, and stops when it leaves the HS limit. This point is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor firstly moves in CW direction at the speed of P03-65 returning to the mechanical origin; after the CW limit is activated, the motor moves in CCW direction in reverse direction; after the HS limit is activated, the motor decelerates to move in CW direction, and stops when it leaves the HS limit; this point is the zero return origin;

Fig.24 Schematic diagram of 26 tracks of zero return mode

When P03-61 = 27, select return to zero mode 27:

Take the CW direction end of HS limit as zero point.

The starting position is at theside of HS limit in CCW direction: the motor firstly moves in CCW direction at the speed of P03-65 returning to the mechanical origin; after the CCW limit is activated, the motor moves in CW direction in reverse direction; after the HS limit is activated, the motor decelerates to move in CW direction, and stops when it leaves the HS limit; this point is the zero return origin;

The starting position is on theHS limit: it runs in the CW direction at low speed, and stops when it leaves the HS limit. This point is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor firstly moves in the CCW direction at the speed of P03-65 returning to the mechanical origin; after the CW limit is activated, the motor moves in the CCW direction in reverse; after the HS limit is activated, the motor decelerates to move in the CW direction, and stops when it leaves the HS limit; this point is the zero return origin;

Fig.25 Schematic Diagram of Track 27 of Return to Zero Mode

Return to zero mode28

When P03-61 = 28, select return to zero mode 28:

Take the CW direction end of HS limit as zero point.

The starting position is at theCCW direction side of HS limit: the motor firstly moves in CCW direction at the speed of P03-65 returning to the mechanical origin; after the CCW direction limit is activated, the motor moves in CW direction in reverse direction; after the HS limit is activated, the motor decelerates to move in CW direction; after leaving the HS limit, the motor moves in CCW direction in reverse direction according to P03-66 to set the low speed; when the HS limit is activated again, the motor stops; this point is the zero return origin;

Starting position is onHS limit: run in CW direction at low speed, run in CCW direction in reverse direction after leaving HS limit according to P03-66 to set low speed, stop when HS limit is activated again, this point is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of P03-65 returning to the mechanical origin, and when the CW limit is activated, it runs in CCW direction in reverse direction, and stops when the HS limit is activated. This point is the zero return origin;

Figure 26 Schematic diagram of 28 tracks of return to zero mode

When P03-61 = 29, select return to zero mode 29:

Take the CCW direction end of HS limit as zero point.

The starting position is at theside of HS limit in CCW direction: the motor firstly moves in CCW direction at the speed of PO3-65 returning to the mechanical origin; after the CCW limit is activated, the motor moves in CW direction in reverse direction; when the HS limit is activated, the motor stops; this point is the zero return origin;

Starting position is onHS limit: run in CCW direction at low speed, run in CW direction in reverse direction after leaving HS limit according to P03-66 to set low speed, and stop when HS limit is activated again, this point is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of PO3-65 returning to the mechanical origin, and after activating and then leaving HS limit, it decelerates to move in CW direction, and stops when HS limit is activated. This point is the zero return origin;

When P03-61 = 30, select return to zero mode 30:

Take the CCW direction end of HS limit as zero point.

The starting position is at the CCW direction side of HS limit: the motor firstly moves in CCW direction at the speed of P03-65 returning to the mechanical origin; after the CCW direction limit is activated, the motor runs in CW direction in reverse direction; after the HS limit is activated, the motor runs in CCW direction in reverse direction at low speed according to P03-66; when the motor leaves the HS limit, it stops: this point is the zero return origin:

The starting position is on theHS limit: it runs in the CCW direction at low speed, and stops when it leaves the HS limit, which is the zero return origin;

The starting position is atthe CW direction side of HS limit: the motor first moves in CCW direction at the speed of PO3-65 returning to the mechanical origin, after activating HS limit, it moves in CCW direction at low speed, and stops when leaving HS limit, and this point is the zero return origin;

The return to zero mode is reserved. When the return to zero mode is selected, there is no action.

Return to zero mode32

The return to zero mode is reserved. When the return to zero mode is selected, there is no action.

Return to zero mode33

When P03-61 = 33, select return to zero mode 33:

Take the first Z signal in CCW direction as zero point.

The motor runs in the CCW direction and stops when the first Z signal is found. This point is zero.

When P03-61 = 34, select return to zero mode 34:

Take the first Z signal in CW direction as zero point.

The motor runs in the CW direction and stops when the first Z signal is found. This point is zero.

Figure 30 Return to zero mode 34 track diagram

Return to zero mode35

When P03-61 = 35, select return to zero mode 35:

Take the current point as the zero position.