

MCAC610/825/845/8A0

DC Power Supply servo driver

User Manual

Address: Building B, Jiayu Science Park, Jin 'an Road, Matian Street, Guangming District, Shenzhen Tel: 0755-26509689 26502268 Fax: 0755-26509289 E-mail:info@jmc-motion.com Http: //www.szjmc.com

Foreword

All contents of this manual are copyrighted by Shenzhen Just Motion Control Electromechanics Co., Ltd., and no unit or individual may copy, copy or copy them without permission of Shenzhen Just Motion Control Electromechanics Co., Ltd. No warranties, positions or other implications of any kind are made in this manual. If there is any product information mentioned in this manual, the direct or indirect data flow caused by the loss of benefits, Shenzhen Just Motion Control Mechanical and Electrical Co., Ltd. and its employees do not assume any responsibility. In addition, the products mentioned in this manual and their information are for reference only and subject to update without notice.

2

All rights reserved.

Shenzhen Just Motion Control

Electromechanics Co., Ltd.

version	prepared	approved
V2. 1	Rd	Rd

Foreword	2
I. Security Terms	
1.1 Reception and installation precautions	6
1.2 Wiring precautions	6
1.3 Operation and operation precautions	7
1.4 Maintenance and inspection precautions	8
II. Product introduction	9
2.1 overview	9
2.2 characteristics	9
2.3 drive specification	10
2.4 Servo driver model description and nameplate content	14
III. Port Description and Definition	15
3.1 Drive port schematic	15
3.2 Driver CN1 Control Signal Input Port	18
3.3 Driver CN2 Encoder Interface Description	20
3.4 Driver CN1 Power, Motor Cable Port	21
IV. Installation instructions	23
4.1 Installation size	23
4.2 Installation and use environment	24
V. Instructions for operation and use of keypad	26
5.1 Introduction to the functions of each part of the panel	26
5.2 Operation Mode Switching Flow	27
5.3 status display	28
5.4 Parameter setting writing and saving method	29
Chapter VI Control Mode and Setting	30
6.1 position control	30

6.2 speed control	37
6.3 torque control	39
Chapter VII Trial Operation and Parameter Adjustment	41
7.1 Commissioning	41
7.2 parameter adjustment	45
7.3 manual gain adjustment	46
Chapter VIII Parameters and Functions	59
8.1 Parameter list	
8.2 parameter description	60
8.3 List of monitoring items	106
8.4 accessibility	111
Chapter IX Fault Analysis and Handling	116
9.1 Fault alarm information table	116
9.2 Fault alarm cause and disposal	118
Chapter X Communication	135
10.1 Modbus communication parameter setting	135
10.2 Modbus communication supports reading and writing	
parameter setting	136
10.3 Modbus communication protocol overview	140
10.4 function number	141
10.5 dead time	146
10.6 Response to Exception Program	146
Chapter XI Special Functions	148
11.1 absolute encoder usage	148

In order to prevent personal and property safety hazards, please observe the following precautions and make the following marks to distinguish them:

▲ dan gerous	indicates a high likelihood of death or serious injury.
▲ not e	Indicates a high likelihood of causing minor injuries or endangering property
\oslash	Indicates prohibited implementation

1.1 Reception and installation precautions

igta M Danger: 1. Please use the driver and motor in the specified way,

otherwise it will cause equipment damage or cause fire.

2. It is forbidden to use it in places with severe water vapor, flammable gas, corrosive gas, etc., otherwise it will cause electric shock, fire, equipment damage, etc.

1.2 Wiring precautions

Danger: 1. Do not connect the driver power supply to the U, V, W

motor output terminals, otherwise the driver will be damaged, which may cause personal injury or fire.

2. Please confirm that the connecting wires of the power supply and motor output terminals are locked tightly, otherwise it may cause sparks and cause fire.

3. Please select the power cord and motor power extension cord correctly to avoid fire caused by insufficient current bearing capacity of the wire.

4. Please confirm that the drive housing and motor are grounded. Poor grounding may cause electric shock.

Note: 1. Please do not tie the motor power line and signal line

together or pass through the same pipeline to prevent interference with the signal.

2, signal line, encoder feedback extension line, please use multi-stranded shielded line, strengthen anti-interference ability.

- 3. Before power-on, please confirm whether each wiring is connected correctly.
- 1.3 Operation and operation precautions

Danger: 1, before the equipment installation, please first no-load

test run, to avoid accidents.

2. Do not let untrained personnel operate to prevent equipment damage and personnel injury caused by mis operation.

3. During normal operation, please do not touch the radiator and its interior with your hands to prevent high temperature burns or electric shocks.

Note: 1, please adjust the driver parameters, and then long-term test, to prevent the use of poor drivers and equipment.

2, please confirm that the equipment start, emergency stop, close and other switches are effective to run the equipment.

3. Please do not switch the power supply frequently.

1.4 Maintenance and inspection precautions

1. During operation, it is forbidden to touch the inside of the driver and motor to prevent electric shock.

- 2 Do not change the connecting wire under the condition of power supply, so as to prevent electric shock or personal injury.
- 3. Operation and routine maintenance must be carried out by trained professionals.
- 4. Do not disassemble or repair except by our company personnel.

II. Product introduction

2.1 overview

MCAC610/825/845/8A0 AC servo driver is a high-performance AC servo unit developed by Just Motion Control. This series of servo drivers adopts advanced DSP chip for motor control and large-scale programmable gate array (FPGA). It has the characteristics of small size, high integration, stable performance and reliable protection. It has rich digital and analog I/O interfaces, can be used with a variety of host computer devices, and supports Ether CAT (COE) communication protocol to facilitate networking. Through the optimized PID control algorithm, the position, speed and torque accuracy of the digital control, with high accuracy, fast response and other advantages. At the same time, it supports the absolute expressions of incremental encoders to meet different requirements for customer performance. Widely used in CNC machine tools, printing and packaging machinery, textile machinery, robots, automated production lines and other automation fields.

2.2 characteristics

1. Using DSP+FPGA dual-chip platform and optimized current loop design, the driver has the characteristics of high dynamic response, extremely short setting time, stable operation and small vibration when stopping.

2. With automatic gain adjustment module, users can choose the rigidity level according to their needs.

3. Built-in FIR filter and multi-group notch filter can automatically identify and suppress mechanical vibration.

4. Built-in disturbance torque observer makes the driver have strong anti-external disturbance ability.

5, Ethernet communication port, support Ether CAT communication 6. Programmable 4-way INPUT and 3-way OUTPUT ports, users can customize input and output through parameter settings, and the application is flexible.

7. It has perfect protection functions such as overvoltage, undervoltage, overspeed, overload, excessive position deviation, encoder error, etc., and can remember 8 groups of historical fault information.

8, with a wealth of monitoring projects, the user can choose the desired monitoring project monitoring operation during the use process.

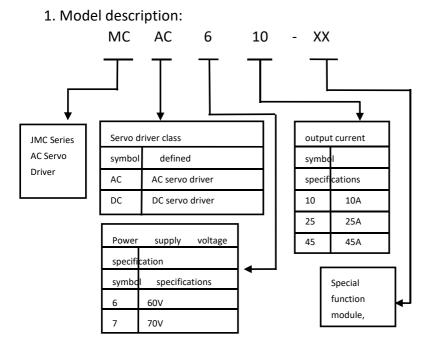
9. The driver can communicate with PC through USB interface to realize simple and fast debugging of servo drive system.

General application parameters do not need to be adjusted.

2.3 drive specification

1. Electrical specifications

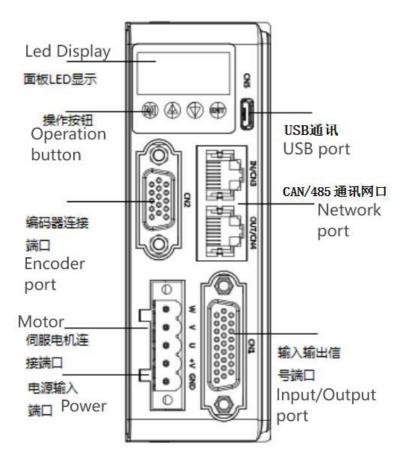
drive model	MCAC61	MCAC82	MCAC84	MCAC8A
	0	5	5	0
input voltage	DC24~60	DC24~80	DC24~80	DC24~80
	V	V	V	V
Continuous	10A	25A	45A	100A
Output Current				
Arms				
Maximum	20A	50A	90A	200A
Output Current				

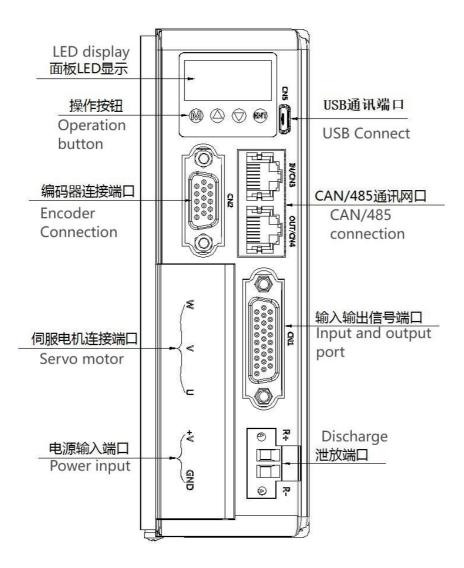

	Arms			
	maximum pulse		5	500K
	frequency			
2.	Basic specifications	•		

	project	described
	control	IGBT PWM control sine wave
mode		current drive mode
	feedback	Incremental encoder/multiturn
	TEEUDACK	absolute encoder
	temperature	Working temperature:
		0^{55} °C Storage temperature:
		-25~85℃
	humidity	Work: 10%~90%
	altitude	<1000m, higher than 1000 m,
conditions		should be used in accordance with
of use		GB/T 3859.2-93 derating
UT USC		Protection class: IP10, cleanliness:
		2
	protection	No corrosive gas, flammable gas
	level	No oil, no water splash
		An environment with less dust, salt
		and metal powder
	Speed	1:5000
	adjustment	
	range	
performan		±0.1%: external load variation
ce	the steady	0~100%
	fast precision	±0.1%: ±10% power input variation
		(220V)
		±0.1%: Ambient ±25℃ (25℃)

	elocity esponse	1200Hz
	requency	
te	orque	±2%
	iccuracy	
	encoder	Phase A, Phase B, Phase C: Linear
	divided pulse	drive output
	output	Frequency division pulse number:
	output	can be arbitrarily set
		Points: 4
		Function: servo ON, alarm
		clearing, forward overtravel signal
		input, reverse overtravel signal
		input, control mode switching, P
		action command input, gain
ir	nput signal	switching input, zero fixed input,
		command pulse prohibition input,
		clockwise limit input, origin limit
		input, counterclockwise limit
		input, position command clearing
		input, command pulse input
		magnification switching input
		Points: 3
		Function: alarm output, brake
0	output signal	open output, servo ready output,
		positioning completion output,
		positioning approach output,
		speed limit detection output,

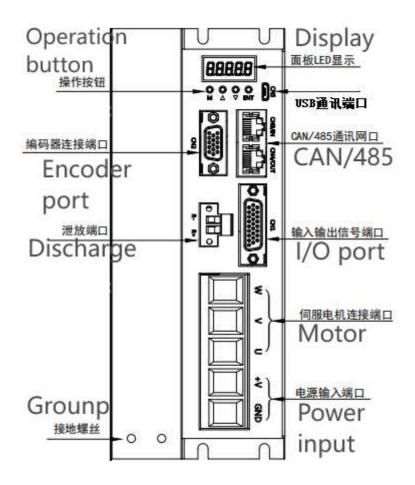
		warning output, command pulse input magnification switching output
	RS485	Support MODBUS protocol. Axis
communic		address: set by parameters
ation	USB	Connect PC for debugging
function		
regener	ation	no
processing		
protect	ion function	Overvoltage, undervoltage,
		overcurrent, overload, etc.


2.4 Servo driver model description and nameplate content

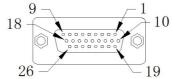

14

III. Port Description and Definition

3.1 Drive port schematic



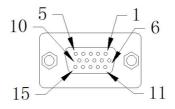
MCAC610 port schematic


MCAC825/845 port

schematic

MCAC8A0 port schematic

3.2 Driver CN1 Control Signal Input Port

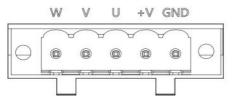


		20 =	=19
PIN number	numeral	definition	note
1	COM+	common input	High 24V active
2	DI1-	DI1 Digital Input Negative	Custom input port (enabled by default)
3	PULS+	pulse positive	
4	PULS-	pulse negative	Input 3.3V-5VDC
5	SIGN+	direction positive	
6	SIGN-	direction negative	Input 3.3V-5VDC
7	DI2-	DI2 Digital Input Negative	Custom input ports
8	DO1+	Digital output positive	Custom output ports
9	DO1-	Digital Output Negative	Custom output ports
10	DO2+	Digital output positive	Custom output ports
11	DO2-	Digital Output Negative	Custom output ports
12	DO3+	Digital output	Custom output ports

		positive	
13	DO3-	Digital Output Negative	Custom output ports
14	DI3-	DI3 Digital Input Negative	Custom input ports
15	DI4-	DI4 Digital Input Negative	Custom input ports
16	T_REF	torque analog positive	
17	V_REF	velocity analog positive	
18	OCZ	Encoder Z-phase open-collector output	
19	+15V	+15V output (for analog commands)	Maximum allowable output current: 50 mA
20	OA+	Encoder Phase A positive output	
21	OA-	Encoder A phase negative output	
22	OB+	Encoder B-phase positive output	
23	OB-	Encoder B-phase negative output	
24	OZ+	Encoder Z-phase positive output	
25	OZ-	Encoder Z-phase negative output	

26	GND	power ground	
----	-----	--------------	--

3.3 Driver CN2 Encoder Interface Description

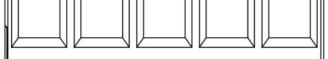


PIN	numeral	definition	note
number			
1	GND	output power	
		ground	
2	VCC	Output 5V power	
		supply	
3	PW+	Pole W phase	
		positive input	
4	PV+	Pole V-phase	
		positive input	
5	PU+	Pole U-phase	
		positive input	
6	PZ+	Encoder Z-phase	
		positive input	
7	PB+	Encoder B-phase	
		positive input	
8	PA+	Encoder Phase A	
		positive input	
9	NC		
10	NC		
11	T+	Bus encoder T+	
12	T-	Bus encoder T-	
13	PZ-	Encoder Z-phase	

		negative input	
14	PB-	Encoder Phase B Negative Input	
15	PA-	Encoder Phase A Negative Input	

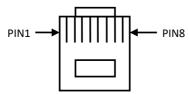
3.4 Driver CN1 Power, Motor Cable Port

1、MCAC610



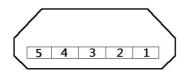
2、MCAC825/845

3、MCAC8A0



termin	the symbol	names	note
al			
numbe			

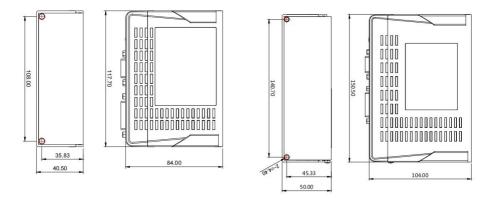
r				
1	W	Motor W phase	Motor power line W	
			phase	
2	V	Motor V phase	Motor power line V	
			phase	
3	U	Motor U phase	Motor power line U	
			phase	
4	VDC	Input DC power	Power Input Positive	
		positive		
5	GND	Input power	Power Input Ground	
		ground		


3.5 Driver CN3/CN4 Port Description

pin number	numeral	Definition Description	
PIN1	CANH	CNAH(bus servo only)	
PIN2	CANL	CNAL(bus servo only)	
PIN3	CGND	CGND(bus servo only)	
PIN4	reserved	reserved	
PIN5	reserved	reserved	
PIN6	GND	to	
PIN7	485-	485-	
PIN8	485+	485+	

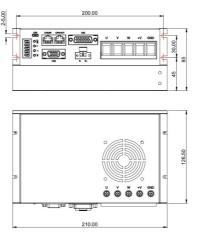
0755-26509689

3.6 Drive CN5 Port Description


Face CN5 port

pin number	numeral	Definition Description	
1	3.3V	RS232 Power Supply	
		3.3V	
2	TX232	RS232 received	
3 RX232		RS232 transmission	
4 reserved		connection-prohibited	
5 GND		RS232 Ground	

Note: If there is TYPE-C interface, it is standard USB communication. Use standard TYPE-C cable.


IV. Installation instructions

4.1 Installation size

MCAC610 size drawing

MCAC825/845 size drawing

MCAC 8A0 size drawing

4.2 Installation and use environment

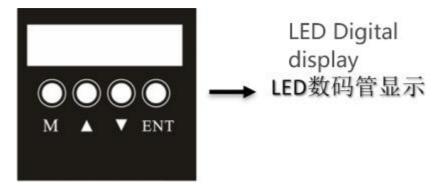
The installation and use environment has a direct impact on the normal operation and service life of the product, so the following conditions must be met:

1, working environment temperature: 0^{55} °C; working environment humidity: $10^{90\%}$ below (no condensation).

2, storage environment: -20 $^{\circ}C$ +85 $^{\circ}C$; storage environment humidity: 90% below (no condensation).

- 3. Vibration: below 0.5G.
- 4. Prevent rain dripping or humid environment.
- 5. Avoid exposure to sunlight.
- 6, to prevent oil mist, salt erosion.

7, to prevent corrosive liquids, gas, etc.


8. Prevent dust, cotton wool and metal fines from invading.
Keep away from radioactive substances and combustibles.
10. Space shall be reserved around the driver placement position in the cabinet to facilitate loading, unloading and maintenance.
11, pay attention to the air flow in the cabinet, if necessary, add an external fan to enhance air flow, reduce the ambient temperature of the driver to facilitate heat dissipation; long-term working temperature below 55 °C.

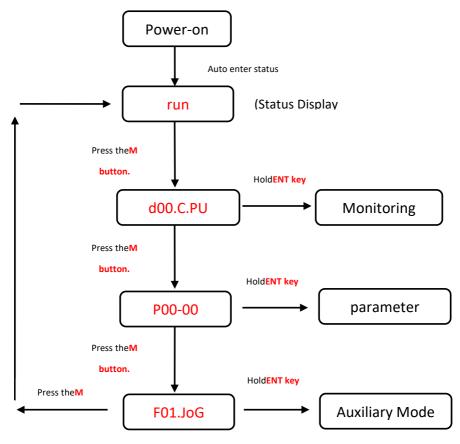
12. Try to avoid vibration sources nearby and install shock absorbing devices such as vibration absorbers or anti-vibration rubber gaskets.

13. If there is an electromagnetic interference source nearby, the power supply and control circuit of the driver are susceptible to interference and cause malfunction. Noise filters can be added or various effective anti-interference measures can be adopted to ensure the normal operation of the driver (noise filter). This increases leakage current and requires an isolation transformer at the driver power input).

V. Instructions for operation and use of keypad

5.1 Introduction to the functions of each part of the panel

panel key label	defined	description
M	M key	Function switching and withdrawal
\triangle	UP key Display change, value increase function	
\bigtriangledown	DOWN key	Display change, value decrease function
ENT	ENT key	a. Long press OK or save function b. Short press is shift function (used to switch high/low position display in parameter mode)


Remark:

a. ENT key press for 3 seconds to confirm or save the function.

b. Under the monitoring and parameter interface, press and hold the UP key or DOWN key to quickly flip.

5.2 Operation Mode Switching Flow

MCAC610/825/845/8A0 series AC servo has four function modes, namely status display mode, monitoring mode, parameter setting mode and auxiliary mode. The switching flow between them is as follows:

Note: After pressing ENT key to enter mode setting, you can exit mode selection by pressing M key.

5.3 status display

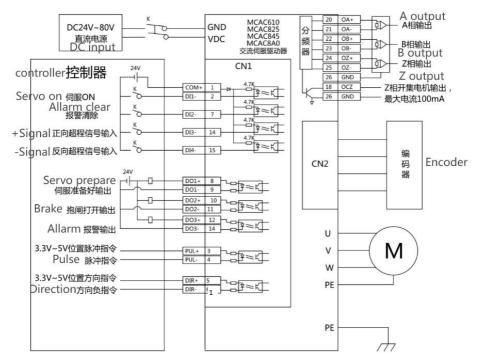
LED display

Status Display Bit Data Meaning

display	meaning	display	meaning
mm	Control loop power	MM	Main circuit power
Ŭ.Ŭ.	supply power-on	ũ.ĩ.	ready display
	display		
	Speed, torque		rotation detection
	control: speed	AA	display
	consistent display		
	Position control:		
	positioning complete		
	display		
	base block display		Speed, torque control:
日日	Servo OFF state lights	RA	speed command input
WatVolkable	up, ON state goes out		middle
			Position control:
			displayed in command
			pulse input

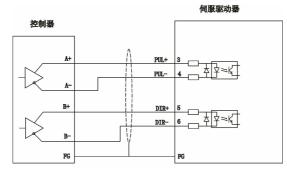
Status Display Abbreviations Meaning

display	meaning		
88888	Servo not ready (power supply not energized)		
8.8.8.8	Servo ready (servo motor not energized)		
8.8.8.8.8	Servo enable status (servo motor energized status)		
8888.	It indicates that theinput port of positive overtravel signal is in effective state, and the motor positive rotation		
8.8.8.8	Indicates that thereverse overtravel signal input port is in an active state, and the motor reverse command is		
88888	Servo correlation operation completed correctly		
S233	Servo is enabled and cannot be operated. It must be turned off before operation.		
88888	Invalid value entered, servo does not perform current operation		
8.828.8	The relevant parameters of servo are locked and can only be operated after unlocking.		
88.888	Servo fault display, please refer to Chapter IX for fault definition.		

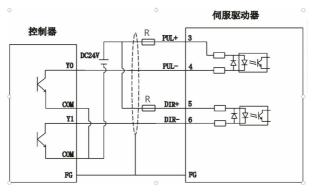

5.4 Parameter setting writing and saving method

Parameter setting writing and saving process

Chapter VI Control Mode and Setting


6.1 position control

6.1.1 Position control wiring diagram



6.1.2 Schematic diagram of position control wiring

Direction + pulse input mode of controller terminal Description: Direction + pulse input is divided into: 3.3V, 5V, 24V signal input mode, using twisted pair connection, which can improve anti-interference ability. In general, microcontroller systems use this position control wiring method. The maximum input pulse frequency of this control mode is 500KHz.

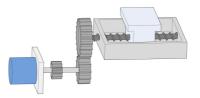
Controller-side open-collector input mode Description: Single-ended input mode can use the power supply provided internally by the driver, or can use an external power supply. However, dual power inputs should not be used to avoid damage to the drive. Under normal circumstances, PLC controller systems use this position control wiring method

Note: When the direction and pulse are connected to 24V signal, it is necessary to connect 1K/1W to 1.5K/1W resistors in series, as shown in the above figure.

6.1.3 Position control mode parameter description

1、 Motor and driver control parameters

parameters code	name	setting range	set	description
P01-01	control mode setting	0-5	0	0: Position mode 1: Speed mode 2: Torque mode 3: Speed, torque 4: Position, Speed 5: Position, torque
P03-00	Location Command Source	0-3	0	0: Pulse command 1: Reserved 2: Bus instruction 3: Built-in multi-stage position


P03-01.0	command pulse mode	0-3	1	0: Quadrature pulse command 1: direction + pulse command 2 or 3: double pulse command
P03-03.0	instruction pulse negation	0-1	0	instruction pulse negation
P03-09	Number of command pulses per revolution of motor	0-1073741822	10000	Set according to user requirements See 8.2 Parameter Description
P03-40	Electronic Gear 1 Molecule	1-1073741822	64	Set according to user
P03-42	Denominator of electronic gear 1	1-1073741822	1	requirements See 8.2 Parameter Description
P03-15	Position deviation too large setting	0-1073741822	90000	Set according to user requirements
P03-25	Absolute value Number of pulses per revolution of motor	1-65535	2500	Set according to user requirements

2. Gain parameters

Please refer to the parameter adjustment in Chapter 7 for adjustment.

6.1.4 Electronic gear ratio calculation example

1、 ball screw transmission

Assumptions:

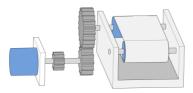
(1) Mechanical parameters: reduction ratio R is 2/1, screw lead is 10mm

(2) Absolute encoder position ring resolution per turn:8388608

(3) Load displacement corresponding to 1 position command (command unit): 0.001mm

Then:

From (1) and (3), the position command (command unit) value required for 1 rotation of the screw (10mm movement of the table) can be obtained:


$$\frac{10}{0.001}$$
 = 10000

The electronic gear ratio is: (B is numerator, A is denominator)

$$\frac{\mathbf{B}}{\mathbf{A}} = \frac{8388608}{10000} \times \frac{2}{1} = \frac{1048576}{625}$$

The final parameter P03-40 is set to 1048576 and P03-42 to 625

2、 belt pulley transmission

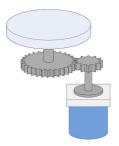
Assumptions:

(1) Mechanical parameters: reduction ratio R: 5/1, pulley diameter: 0.2m(pulley circumference: 0.628m)

(2) Absolute encoder position ring resolution per turn:8388608

(3) Load displacement corresponding to 1 position command (command unit): 0.00005m Then:

From (1) and (3), the position command (command unit) value required for 1 revolution of pulley (load) can be obtained:


$$\frac{0.628}{0.000005} = 125600$$

The electronic gear ratio is: (B is numerator, A is denominator)

 $\frac{\mathrm{B}}{\mathrm{A}} = \frac{8388608}{125600} \times \frac{5}{1} = \frac{262144}{785}$

The final parameter P03-40 is set to 262144 and P03-42 to 785

3、rotational load

Assumptions:

(1) Mechanical parameters: reduction ratio R is 10/1, rotation angle of load shaft is 360° for 1 turn

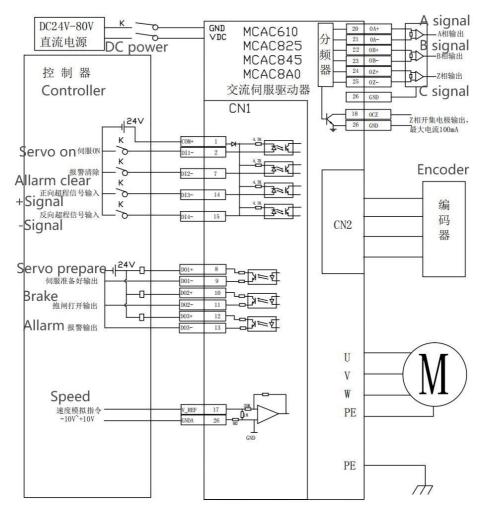
(2) Absolute encoder position ring resolution per turn:8388608

(3) Load displacement corresponding to 1 position command (command unit): 0.01°

Then:

From (1) and (3), the position command (command unit) value required for 1 rotation of the load can be obtained:

$$\frac{360}{0.01} = 36000$$


The electronic gear ratio is: (B is numerator, A is denominator)

 $\frac{\mathrm{B}}{\mathrm{A}} = \frac{8388608}{36000} \times \frac{10}{1} = \frac{524288}{225}$

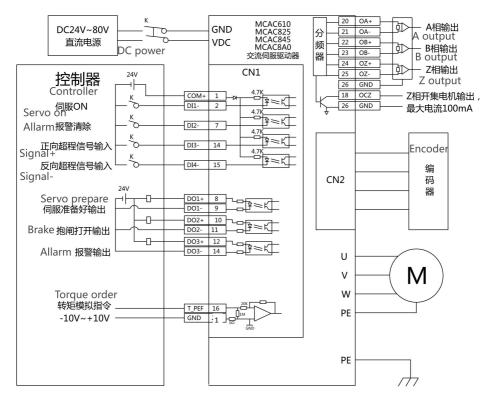
The final parameter P03-40 is set to 524288 and P03-42 to 225 Note: If the position command value required for calculating 1 rotation is an integer, it is recommended to directly set P03-09(the number of command pulses for 1 rotation of the motor).

6.2 speed control

6.2.1 speed control wiring diagram

6.2.2 Speed Control Mode Parameter Description

1、 Motor and driver control parameters


param eters code	name	setting range	set	description
P01-0 1	control mode setting	0-5	1	0: Position mode 1: Speed mode 2: Torque mode 3: Speed, torque 4: Position, Speed 5: Position, torque
P04-0 0	speed command source	0-3	0	0: External analog command 1: Setpoint for P04-02 2: Bus instruction 3: Internal multi-stage speed
P04-0 2	digital speed setpoint	-6000-60 00	0	When P04-00 is set to 1, P04-02 is the speed setpoint
P04-0 6	forward speed limit	0-6300	6000	limiting forward speed
P04-0 7	reverse speed limit	-6300-0	-600 0	limit reverse speed
P06-0 5.0	speed analog command selection	0-1	0	Select AI1 interface as input
P06-4 0	Speed analog command input gain	10-2000	300	Set according to user requirements See 8.2 Parameter Description

2. Gain parameters

Please refer to the parameter adjustment in Chapter 7 for adjustment.

6.3 torque control

6.3.2 Torque Control Mode Parameter Description

1. Motor and driver control parameters

param eters code	name	setting range	set	description
P01-0 1	control mode setting	0-5	2	0: Position mode 1: Speed mode 2: Torque mode 3: Speed, torque 4: Position, Speed 5: Position, torque
P05-0 0	torque command source	0-3	0	0: Analog command 1: Set value of P05-03 2: Bus command 3: Built-in multi-stage torque
P05-0 1	Speed Limit Source Settings	0-3	1	0: Speed analog command 1: Set value of P05-02 2 2: Bus command 3: Built-in multi-stage speed
P05-0 2	Torque mode speed limit setpoint	0-6000	100 0	Set the maximum speed of the motor in torque mode. Effective when P05-01 is 1
P05-1 0	internal forward torque limit	0-300	200	Limit forward torque values
P05-1 1	Internal Reverse Torque Limiting	-300-0	-200	limit reverse torque value

P06-0 5.1	torque analog command selection	0-1	1	Select AI1 interface as input
P06-4 3	Torque analog command input gain	0-100	10	Set according to user requirements See 8.2 Parameter Description

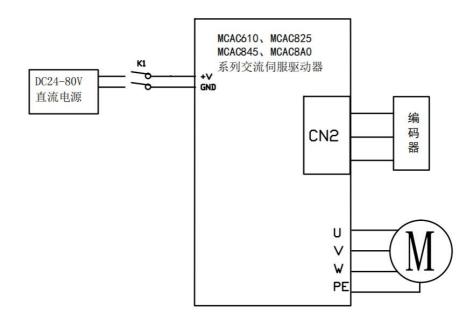
2. Torque control command related gain parameters

Please refer to the parameter adjustment in Chapter 7 for adjustment.

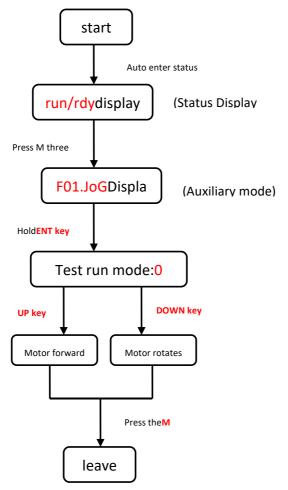
Chapter VII Trial Operation and Parameter Adjustment

7.1 Commissioning

7.1.1 pre-run test


In order to avoid damage to the servo driver or mechanism, please remove all loads of the servo motor before operation, and carefully check whether the following precautions are normal, and then power-on for no-load test; after the no-load test is normal, the load of the servo motor can be connected for the next test.

Notes:


	I
Test before	1、 Check servo drive for visible cosmetic damage
power-on	2、 Insulation treatment shall be applied to the
	connection part of wiring terminal
	3、 Check for foreign objects inside the drive
	4、 Servo drives, motors and external regenerative
	resistors must not be placed on combustible
	objects
	5、 In order to avoid electromagnetic brake failure,
	please check whether the power supply circuit
	can work normally by stopping and cutting off
	immediately.
	6、 Confirm whether the external power supply
	voltage of servo driver meets the requirements
	7、 Confirm whether the motor U, V, W power line,
	encoder line and signal line are connected
	correctly (label and manual confirmation)
Detection at	1、 Servo driver power indicator and LED display is
power-on	normal
	2、 Confirm whether all parameters are set correctly.
	Unexpected actions may occur depending on
	mechanical characteristics.
	Do not adjust parameters excessively
	3、 Whether servo motor is self-locking
	4、 If the servo motor vibrates and makes excessive
	noise during operation, please contact the
	manufacturer.

7.1.2 no-load commissioning test

1. JoG mode no-load test run test, users can not need to connect additional wiring, for safety reasons, JoG no-load speed test before, please fix the motor base, in case of motor speed changes caused by the reaction force caused by danger. The following is a simple wiring diagram in JoG mode:

Note: MCAC610 voltage range 24~60V 2. Select JoG mode for trial operation according to the following flow chart

Note:F01.JOG operating speed is set by parameter P04-01

7.2 parameter adjustment

According to the equipment requirements, after selecting the appropriate control mode, it is necessary to adjust the servo gain parameters reasonability. The servo driver can drive the motor quickly two lines and accurately, and maximize the mechanical performance.

Gain setting: Low Gain setting: Medium Gain setting: High + Feedforward

Position loop gain: 800 Position loop gain: 1600 Position loop gain: 1600

Speed loop proportional gain: 400Speed loopproportional gain: 600Speed loop proportional gain: 600Velocity loop integral time constant: 1000Velocity loopintegral time constant: 1000Velocity loop integral timeconstant: 1000Velocity loop

Speed Feedforward Gain: 0 Speed Feedforward Gain: 0 Speed Feedforward Gain: 50

Load inertia ratio: 100 Load inertia ratio: 100 Load inertia ratio: 100 The servo gain is adjusted by several loop parameters (position loop, velocity loop, filter, etc.), which influence each other. Therefore, the gain setting needs to be balanced according to certain rules.

The process of gain adjustment can be carried out according to the following figure:

7.3 manual gain adjustment

7.3.1 basic parameters

When the automatic gain adjustment does not achieve the desired effect, you can manually adjust the gain to optimize the effect.

The servo system consists of three control loops. The basic control block diagram is as follows:

Gain adjustment needs to follow the order of inner ring and outer ring, first set the load moment of inertia ratio P01-04, then adjust the speed loop gain, and finally adjust the position loop gain.

Speed loop gain: adjust the setting value as much as possible without vibration and noise, which can improve speed following performance and speed up positioning time.

Speed integration constant: the smaller the setting value, the faster the integration speed, the stronger the integration effect, too small easy to produce vibration, noise.

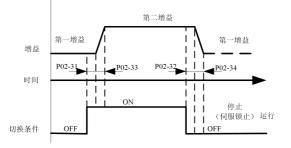
para meter code	name	settin g range	set	said Ming
P01-0 2.0	Real-ti me automa tic adjust ment mode	0-4	0	0: Manually adjust rigidity. 1: Standard mode automatically adjusts rigidity. In this mode, parameters P02-00, P02-01, P02-10, P02-11, P02-13, P02-14, P08-20, P08-21 will be automatically set according to the rigidity level set by P01-03, manual adjustment of these parameters will not work. The

P01-0	Automa	0-31	13	 P02-03 (velocity feedforward gain), P02-04 (velocity feedforward smoothing constant). 2: Positioning mode automatically adjusts rigidity. In this mode, parameters P02-00, P02-01, P02 - 10, P02-11, P02-13, P02-14, P08-20, P08-21 will be automatically set according to the rigidity level set by P01-03. Manual adjustment of these parameters will not work. The following parameters will be fixed and cannot be changed: P02-03 (velocity feedforward gain): 30% P02-04 (velocity feedforward gain): 50 3: Automatic adjustment of rigidity 2. In this mode, parameters P02-00, P02-01, P02-10, P02-11, P02-13 will automatically set the rigidity level set according to P01-03. The following parameters are set by the user: P02-03 (speed feedforward gain), P02-14 (speed integration constant 2), P08-20 (torque command filter constant 1), P08-21 (torque command filter constant 2) 4: Automatic adjustment, dependent on parameters P01-05, P01-06 Built-in 32 kinds of gain parameters, when P01-02 is set to 1, 2, 3 when the
3	tic adjust	0-31	13	effect. Can be called directly

	ment of stiffnes s settings in real time			according to the actual situation, the larger the setting value, the stronger the rigidity.
P02-0 0	Positio n Control Gain 1	0-200 00	40 0	Larger settings result in higher gain, greater stiffness, and smaller lag, but larger values can cause system oscillation and overshoot. Increases the value as much as possible without oscillation. Increases for static.
P02-0 1	Positio n Control Gain 2	0-200 00	40 0	Larger settings result in higher gain, greater stiffness, and smaller lag, but larger values can cause system oscillation and overshoot. Increases the value as much as possible without oscillation. Increases for movement.
P02-0 3	velocity feedfor ward gain	0-100	30	The feedforward gain of velocity loop, the larger the parameter value, the smaller the position tracking error of system, the faster the response. However, if the feedforward gain is too large, the position loop of the system will be unstable, and overshoot and oscillation will easily occur.
P02-0 4	velocity feedfor ward smooth ing constan t	0-640 0	50	This parameter is used to set the velocity loop feedforward filter time constant. The larger the value, the larger the filtering effect, but the larger the phase lag.
P02-1	Speed	1-200	40	Larger settings result in faster speed

0	proport ional gain 1	00	0	response, and parameter values are set according to load conditions. Increases the value as much as possible without oscillation. Increases for static.
P02-1 1	Velocity integral constan t 1	10-51 200	20 00	Integral time constant of speed regulator, the smaller the setting value, the faster the integration speed, the greater the stiffness, too small easy to produce vibration, noise. <\$) Reduce the value of this parameter as much as possible without system oscillation. \$> This parameter is for steady state response.
P02-1 3	Speed proport ional gain 2	1-200 00	40 0	Larger settings result in faster speed response, and parameter values are set according to load conditions. Increases the value as much as possible without oscillation. Increases for movement.
P02-1 4	Velocity integral constan t 2	10-51 200	20 00	Integral time constant of speed regulator, the smaller the setting value, the faster the integration speed, the greater the stiffness, too small easy to produce vibration, noise. <\$) Reduce the value of this parameter as much as possible without system oscillation. \$> This parameter is for steady state response.

7.3.2 gain switching


The gain switching function can be triggered by servo internal status or external DI port and is only active in position control and speed control modes. Gain switching can be used to:

Switch to lower gain in motor rest (servo enabled) state to suppress vibration;

Switch to higher gain in motor running (servo enabled) state to shorten positioning time;

Switch to higher gain in motor running state to obtain better command following performance;

Depending on the usage, an external signal is used to switch between different gain settings.

related parameters

param eter code	name	setting range	factor y settin g	units	effectiv e time
P02-30 .0	Gain switching settings	0-1	0		effective immedia tely
P02-30	gain switching mode	0-9	0		effective

.1					immedia tely
P02-31	Gain switching time 1	0-60000	100	ms	effective immedia tely
P02-32	Gain switching time 2	0-60000	800	ms	effective immedia tely
P02-33	Gain switching latency 1	0-60000	1000	ms	effective immedia tely
P02-34	Gain switching latency 2	0-60000	100	ms	effective immedia tely

7.3.3 feed forward function

Speed feedforward: During position control, the required speed control command is calculated from the position command and added to the output of the position regulator to reduce the position deviation and improve the response of position control.

Torque feedforward: calculating the required torque command from the speed control command and adding it to the speed regulator output to improve the speed control response.

A. velocity feedforward operation

With the velocity feedforward smoothing constant set to 50 (0.5ms), the system requirements are met by increasing the velocity feedforward gain step by step. However, excessive velocity feedforward gain will cause position overshoot, which will prolong the settling time.

B. torque feedforward operation

When the torque feedforward smoothing constant is set to 50, the torque feedforward gain is gradually increased to meet the system requirements.

para met ers code	name	setting range	ex-fa ctory set	units	entry into force time
P02- 03	velocity feed forward gain	0-100	30	1%	effecti ve imme diatel y
P02- 04	velocity feed forward smoothing constant	0-6400	50	0.01m s	effecti ve imme diatel y
P02- 19	torque feed forward gain	0-200	0	1%	effecti ve imme diatel y
P02- 20	torque feed forward smoothing constant	0-6400	80	0.01m s	effecti ve imme diatel y

7.3.5 resonance suppression

Too much stiffness and too fast response of servo system may cause resonance of mechanical system, which can be improved by reducing the gain of control loop. Resonance suppression can also be performed by using low-pass filters and traps without reducing gain.

1. Resonance frequency detection

The resonance frequency of the mechanical system can be observed through monitoring items d26.1.Fr, d28.2.Fr

2. Torque command low-pass filter (P08-20, P08-21)

Low-pass filters are used when the vibration frequency shifts, and they can have good effects when used for high frequency vibration. By setting the filter time constant, resonance is attenuated near the resonance frequency. However, low-pass filter will make the phase lag, bandwidth reduction, phase margin reduction easily lead to loop oscillation. Therefore, it can only be used in high-frequency vibration occasions.

		· ·			
para met		setting	ex-fa ctor		entry into
ers	name	range	y	units	force
code			set		time
					effecti
P08- 20	torque command filter constant	0-2500	100	0.01m s	ve imme diatel
	the second tergue				y offocti
P08-	the second torque command filt	0-2500	100	0.01m	effecti ve
21	constant	0 2000	100	S	imme

Filter cutoff frequency (Hz)= 1/(2*pi*P08-20(ms)*0.001)

		diatel
		у

3. Notch filter

Notch filters are used when the resonant frequency of the system is fixed. A notch filter can suppress mechanical resonance by reducing the gain at a specific frequency. If the trap is set correctly, the vibration can be suppressed effectively, and the servo gain can be increased continuously. Servo built-in multiple sets of traps, the first and second traps can be automatically set by the internal, but also through manual input parameters. Other traps can only be parameterized manually.

A. adaptive trap mode

When the self-tuning function is used, and P 08-25.0, P 08-25.1 are set to 1, the servo system will automatically identify the current resonance frequency and automatically configure the trap parameters through the adaptive trap function module.

B. Perform frequency identification manually and set trap parameters

The auxiliary function of the driver can be used to identify vibration frequency and set trap parameters at the same time. Note: This function only scans the maximum amplitude point of each frequency of the machine. This function scans out frequencies even if the machine itself does not have mechanical resonance points. Use steps:

a) Confirm whether the first trap and the second trap allow setting. This can be determined by looking at parameter P 08-24. If both the first trap and the second trap are enabled. Then it is necessary to set the parameters of the first or second trap to the third trap and set the corresponding P 08-24. 0/1 is set to 0. That is, it means that the first/second trap can be reset.

b) Turn off servo enable so that servo is in the OFF enable state. Then perform auxiliary function F 21 c) After performing the F 21 auxiliary function, the driver will give the motor a certain excitation to trigger mechanical resonance. The identified vibration frequency is then displayed on the driverLED.

d) If the frequency identification is correct, press and hold the OK key, the driver will automatically set the current frequency parameter to the first/second trap, and set the corresponding P 08-24.0/1 to 1 to start the trap.

related parameters

	parameters	
para		
met	name	description
ers	name	
code		
P08- 51	sweep torque amplitude	Setting range:1-300 sweep torque amplitude

C. Use auxiliary functions to identify resonance frequencies and set trap parameters during mechanical operation

The auxiliary function of the driver can be used to identify vibration frequency and set trap parameters at the same time. The difference from the function of the previous point is that in item B, when the mechanical switch is enabled, the driver itself gives excitation to identify resonance. Item C refers to resonance in normal operation of the machine and identifies the frequency. Use steps:

a) Confirm whether the first trap and the second trap allow setting. This can be determined by looking at parameter P 08-24. If both the first trap and the second trap are enabled. Then it is necessary to set the parameters of the first or second trap to the third trap and set the corresponding P 08-24. 0/1 is set to 0.That is, it means that the first/second trap can be reset.

b)Auxiliary function F22 is

c) After performing the F 22 auxiliary function, the driver enters the frequency recognition state for 10 s. When the device is operated during this time, the driver will recognize when resonance points occur and display them on the LED. Sensitivity of frequency identification depends on parametersP02 -51, P02-52.

d) If the frequency identification is correct, press and hold the OK key, the driver will automatically set the current frequency parameter to the first/second trap, and set the corresponding P 08-24.0/1 to 1 to start the trap.

related parameters

	purumeters	
para met ers code	name	description
P02- 51	vibration detection sensitivity	Setting range: 50-500
P02- 52	Vibration detection level	Setting range: 0-5000 the small that parameter value, the more sensitive the detection sensitivity is

D. Manual setting of trap parameters

a) The resonance frequency of the mechanical system can be observed through monitoring items d26.1.Fr, d28.2.Fr.

b) inputting the resonance frequency observed in the previous step into the trap parameters, and simultaneously inputting the width grade and depth grade of the trap group. c) If the vibration is suppressed, it means that the trap works. You can continue to increase the gain, and repeat the previous 2 steps after new vibrations appear.

d) If the vibration cannot be eliminated for a long time, please turn off the servo enable in time.

related parameters

	purumeters	
para		
met	name	description
ers	name	description
code		
P08-	Notch	Setting range: 300-5000, unit: Hz
30	filter 1	Center frequency of trap 1
50	frequency	When set to 5000, trap is invalid
P08-	Notch	Setting range:50-1000
31	filter 1	Notch Width Rating for Trap 1
51	width	is the ratio of width to center frequency.
		Setting range:0-1000
	Notab	Trap Depth Rating for Trap 1
P08-	Notch filter 1	is the ratio between the input and output of the
32		trap center frequency.
	depth	The larger this parameter, the smaller the notch
		depth and the weaker the effect

trap correlation parameter

para meter s code	name	setting range	ex-fa ctory set	units	entry into force time
P08-2	first trap enable	0-1	0		effecti

4.0					ve
					immed
					iately
					effecti
P08-2	cocord tran anabla	0-1	0		ve
4.1	second trap enable	0-1	0		immed
					iately
					effecti
P08-3	Notch Filter 1	50-5000	5000	HZ	ve
0	Frequency	50 5000	5000	112	immed
					iately
					effecti
P08-3	Notch Filter 1 Width	50-1000	70	0.01	ve
1					immed
					iately
000 2	Notch Filter 1 Depth	0-1000	0	0.001	effecti
P08-3 2					ve immed
2					iately
					effecti
P08-3	Notch Filter 2		5000	HZ	ve
3	Frequency	50-5000			immed
	litequency				iately
					effecti
P08-3		50 4000	70	0.01	ve
4	Notch Filter 2 Width	50-1000	70	0.01	immed
					iately
					effecti
P08-3	Notch Filter 2 Depth	0-1000	0	0.001	ve
5					immed
					iately

				HZ	effecti
P08-3	Notch filter 3	50-5000	5000		ve
6	frequency	50-5000	5000		immed
					iately
	Notch Filter 3 Width			0.01	effecti
P08-3		FO 1000	70		ve
7		50-1000	70		immed
					iately
					effecti
P08-3 8		0 1000	0	0.001	ve
	Notch Filter 3 Depth	0-1000	0	0.001	immed
			1		iately

* Note: No. 1 and No. 2 traps need P 08-24 enabled to function. The third trap only needs to set the frequency parameters to work.

Chapter 8 Parameters and Functions

8.1 Parameter list

P00-xx indicates motor and driver parameters

P01-xx Main control parameters
P02-xx indicates gain class parameters
P03-xx indicates position parameters
P04-xx indicates speed parameter
P05-xx indicates torque parameter
P06-xx indicates I/O parameters
P08-xx indicates advanced functional parameters

The bit numbers 0, 1, 2 and 3 represent the bit numbers of the current parameter code value, and the sequence of the bit numbers is 3210; the bit numbers without values represent the entire parameter value.

8.2 parameter description

Note:As shown in the red box in the above figure, it represents **the** identifier of the parameter, where **0**,**1**,**2** and**3** represent the identifier of the current parameter value, and the sequence of the identifier is**3210**.

parame ters code	name	description
P00-00	Motor No.	Factory set, no need to set 0: P00-00 to P00-19 active 2000: Absolute encoder motor, P00-01 to P00-19 are automatically identified by the driver

8.2.1 P00-xx motor and driver parameters

P00-01	L	rated speed of motor	Setting range: 1-6000, unit: rpm Factory set, no need to set
P00-02	2	motor rated torque	Setting range: 1-65535, unit: 0.01N.M According to the distribution machine settings, the factory has been set
P00-03	3	motor rated current	Setting range: 1-65535, unit: 0.01A According to the distribution machine settings, the factory has been set
P00-04	1	motor moment of inertia	Setting range: 1-65535, unit: 0.01kg.cm ² According to the distribution machine settings, the factory has been set
P00-05	5	motor pole pair	Setting range: 1-31, unit: antipole According to the distribution machine settings, the factory has been set
	0	Encoder-Type	Setting range: 0-1 0: incremental encoder; 1: absolute encoder;
	1	Encoder-Over heat Alarm	Setting range: 0-1 0: Turn on overheat alarm 1: Turn off overheat alarm
P00- 07	2	Encoder-Mult iturn Alarm	Setting range: 0-1 0: Turn on multi-turn alarm (multi-turn absolute encoder) 1: Turn off multi-turn alarm (single-turn absolute encoder)
	3	Encoder-Batt ery Alarm	Setting range: 0-1 0: Battery alarm on (multiturn absolute encoder) 1: Turn off battery alarm (single-turn absolute encoder)
P00-08	3	encoder zero offset	Setting range: 0-360° According to the distribution machine settings, the factory has been set
P00-09)	rated voltage	According to the distribution machine settings, the factory has been set

	1	
P00-10	rated power	According to the distribution machine settings, the factory has been set
D00 11	maximum	According to the distribution machine
P00-11	torque	settings, the factory has been set
	maximum	
P00-12	rotational	According to the distribution machine settings, the factory has been set
	speed	settings, the factory has been set
P00-13	stator	According to the distribution machine
P00-15	resistance	settings, the factory has been set
	stator	According to the distribution machine
P00-14	inductance	According to the distribution machine settings, the factory has been set
	Lq	settings, the factory has been set
	stator	According to the distribution machine
P00-15	inductance	settings, the factory has been set
	Ld	
	coefficient of	According to the distribution machine
P00-16	linear back	settings, the factory has been set
	EMF	
P00-17	electrical	According to the distribution machine
100 1/	constant	settings, the factory has been set
P00-18	mechanical	According to the distribution machine
	constant	settings, the factory has been set
P00-19	Current gain	According to the distribution machine
	percentage	settings, the factory has been set
	Power-on	Setting range:0-100, default 100 Set according to customer display
	interface	requirements
P00-20	display	When set to 100, the drive displays run status
	setting	when powered up
		Other parameter setting values are set

			according to the serial number of the monitoring item list (Chapter 8.3). For example: when the customer needs to drive and display the motor speed d08.F.SP when powering on, the parameter is set to 8.	
P00-23		Slave ID Settings	Setting range: 0-255, default 1 Slave ID setting during Modbus communication	
P00- 24	0	Modbus communicati on baud rate	Setting range: 0-7, default 2 0:2400 1:4800 2:9600 3:19200 4:38400 5:57600 6:115200 7:256000	
P00- 24	1	485 Communicati on parity check mode	Setting range 0-3, default 0 0: no check, 2 stop bits 1: even check, 1 stop bit 2: odd parity, 1 stop bit 3: No check, 1 stop bit	
P00-26		Modbus communicati on response delay	Setting range: 0-100, unit. 01mS • Default 0 When the parameter is set to 0, respond according to standard communication. When the parameter is set to 0, Modbus communication response time responds according to the set time.	
P00-30		Braking resistor settings	Setting range: 0-2 0: No regenerative resistor used 1: Use built-in regenerative resistor 2: Use external regenerative resistor	
P00-31		External braking resistance power	Setting range: 1-65535, unit: 1W According to the external braking resistance power correctly set, such as: set value is 40, then the resistance power is 40W	
P00-32		External	Setting range: 1-65535, unit: 0.1 ohm	

	brake		Correct setting according to external braking
	resistance		resistance
		Built-in	Setting range: 1-65535, unit: 1W
P00-33	3	braking	According to the built-in braking resistor
100 00		resistance	power correctly set, such as: set value is 40,
		power	then the resistance power is 40W
		Built-in	Setting range: 1-65535, unit: 0.1 ohm
P00-34	1	braking	Correct setting according to built-in braking
		resistance	resistance
			Setting range: 1-100, unit: %
			According to the reasonable setting of
		coefficient of	resistance heat dissipation conditions, the
P00-35	-	heat	heat dissipation conditions can be set
F00-3.	,		appropriately. When the setting value is large,
		dissipation	the regenerative allowable energy of the
			resistance increases, and it is not easy to
			report regenerative overload.
		Three-phase	Setting range: 0-1
	0	power input selection	0: Single power input
	0		1: Three-phase power input (phase loss alarm
P00-		SEIECTION	AL400 will be generated when phase loss)
		Electrical	Setting range: 0-1
39	1	signal	0: Normal use power-on judgment signal
	T	shielding on	1: shield power-on signal
		RST	1. Shield power-on signal
		Temperature	Setting range: -20-20, unit: Celsius
P00-40)	compensatio	Correction of deviation of d24.Ath from
		n settings	actual temperature by parameter values
		Overtempera	Setting range: 1-150, unit: Celsius
P00-41		ture alarm	Alarm when radiator temperature reaches set
		settings	value E.440
P00-42		Overtempera	Setting range: 1-150, unit: Celsius
		ture warning	Overtemperature warning when radiator
		settings	temperature reaches set point
		Fan startup	Setting range: 1-150, unit: Celsius
P00-43		temperature	Fan starts when radiator temperature reaches
		setting	set point

	0	Fan fault settings	Setting range: 0-1 0: Close fault 1: Allow fault
P00-	1	Abnormal fault setting for communicati on with FPGA (E.052)	Setting range: 0-1 0: Close fault 1: Allow fault
44	2	Regeneration abnormal alarm (E.430)	Setting range: 0-1 0: Close fault 1: Allow fault
	3	Soft start resistor overload fault setting (E.435)	Setting range: 0-1 0: Close fault 1: Allow fault
	0	DB overload fault setting (E.436)	Setting range: 0-1 0: Close fault 1: Allow fault
P00- 46	1	Motor runaway detection fault setting (E.421)	Setting range: 0-1 0: Close fault 1: Allow fault
	2	u-phase current feedback abnormality	Setting range: 0-1 0: Close fault 1: Allow fault

		(E.071)	
	3	w-phase current feedback abnormality (E.072)	Setting range: 0-1 0: Close fault 1: Allow fault
P00-	0	Motor power line disconnectio n fault setting (E.305)	Setting range: 0-1 0: Close fault 1: Allow fault
47	1	FPGA clock anomaly fault setting (E.069)	Setting range: 0-1 0: Close fault 1: Allow fault
P00-50	0	Motor stall protection time	Setting range: 0-60000Unit: ms Set the alarm protection time of AL410 when triggeringmotor to block rotation
P00-51		overload warning value	Setting range: 0-100Unit: % Set the overload warning threshold as a percentage of the overload warning time. Eg: When 60% is set, overload alarm is triggered when overload accumulation reaches overload alarm60%.
P00-52		Undervoltage alarm voltage value	Setting range: 0-500 Unit: V Setundervoltage alarm threshold
P00-55		overload reference	Setting range: 50-200 Unit: % Set the initial threshold of overload alarm

	value	curve. When the threshold is lower than the threshold, the motor can run for a long time without triggering overload alarm.
P00-56	Motor overload percentage of time	Setting range: 10-100 Unit: % Set percentage of overload protection time curve

8.2.2 P01-xx Main control parameters

param eters code	name	descript	ion		
P01-00	rotational direction	Setting range: 0-1 0: Counterclockwise is positive 1: clockwise is positive			
P01-01	control mode setting	0: Positi 1: Speed 2: Torqu 3: Speed using or set the s selectio Control the logid 4: Positi	ne of the extern selected DI por n to 5 (control mode can be s cal state of the terminal logic effective invalid on and speed	e ontrol mode. To nal input ports in t input port fun mode switching witched by cont	n CN1, ction i). rolling o switch

				rtinput port fund		
		selection to 5 (control mode switching).				
		Control mode can be switched by controlling				
		the log	ical state of the	İ	,	
			terminal	control		
			logic	mode		
			effective	position		
				mode		
			invalid	speed mode		
		5: Posit	ion and torque	control mode. T	o switch	
		using o	ne of the exter	nal input ports ii	n CN1,	
		set the	selected DI po	rt input port fun e	tion	
		selection to 5 (control mode switching).				
		Control	mode can be s	witched by cont	rolling	
		the logi	ical state of the	port.		
			terminal	control		
			logic	mode		
			effective	position		
				mode		
			invalid	torque		
				mode		
		Setting	range: 0-4			
		0: Man	ually adjust rigi	dity.		
		1: Standard mode automatically adjusts				
	Real-time	rigidity. In this mode, parameters P02-00,				
P01-02	automatic	P02-01, P02-10, P02-11, P02-13, P02-14,				
201-02	adjustment	P08-20 will be automatically set according to				
	mode	the stiffness level set by P01-03, manual adjustment of these parameters will not work. The following parameters are set by the user:				
		P02-03	(velocity feedf	orward gain), PO	2-04	

		 (velocity feedforward smoothing constant). 2: Positioning mode automatically adjusts rigidity. In this mode, parameters P02-00, P02-01, P02 - 10, P02-11, P02-13, P02-14, P08-20 will be automatically set according to the rigidity level set by P01-03. Manual adjustment of these parameters will not work. The following parameters will be fixed and cannot be changed: P02-03 (velocity feedforward gain): 30.0% P02-04 (velocity feedforward smoothing constant): 0.50 3: Automatic adjustment of rigidity 2. In this mode, parameters P02-00, P02-01, P02-10, P02-11, P02-13 will automatically set the
		rigidity level set according to P01-03. The following parameters are set by the user: P02-03 (speed feedforward gain), P02-14 (speed integration constant 2), P08-20 (torque command filter constant 1), P08-21 (torque command filter constant 2) 4: Automatic adjustment, dependent on parameters P01-05, P01-06
P01-03	Automatic adjustment of stiffness settings in real time	Setting range:0-31 Built-in 32 kinds of gain parameters, when P01-02 is set to 1, 2, 3 when the effect. Can be called directly according to the actual situation, the larger the setting value, the stronger the rigidity.
P01-04	moment of inertia ratio	Setting range:0-20000, unit: 1% Set the load inertia ratio of the corresponding motor as follows:

			P01-04= Load inertia/Motor moment of inertia For this inertia ratio, F19.J-L auto-inertia identified values can be used, and the identified values can be written into parameters.
P01-	0	mute adjustment selection	Setting range:0-1 0: Turn offmute adjustment 1: Turn onmute adjustment
05	2	static current base gain	Setting range:0-8 The smaller the value, the smaller the current gain at low loads. 0: 20%, 8: 100%.
P01- 06	0	self-adjustin g value	Setting range:0-7 Works when P01-02 is set to 4, the higher the value, the stiffer.
P01- 06	1	self-adjustin g load value	Setting range:0-2 Active when P01-0-2 is set to 4 The larger the value, the greater the model load
P01-10		vibration detection selection	Setting range:0-2 0: No vibration detection (E.520 alarm off) 1: Warning after vibration detection (close A. 911 warning) 2: Alarm after vibration detection
P01-11		vibration detection sensitivity	Setting range:50-500, unit: % Percentage based on P02-52
P01-12		Vibration detection level	Setting range: 0-5000 Unit: rpm vibration detection level base

P01-1 3		residual vibration detection amplitude	Setting range: 1-3000 Unit: 0.1% Based on the positioning completion threshold
	0	Stop method when servo OFF and Gr.1 fault occur	 Setting range: 0-2 It is necessary to confirm whether the driver has DB hardware circuit 0: Stop the motor by DB, then hold DB. 1: Stop the motor by DB and then release DB. 2: Do not use DB, stop freely
P01- 20	1	Stop method in case of Gr.2 fault	 0: Use the settings in P01- 20.nX. 1: Set torque to decelerate shutdown according to P01-21, and then set according to P01- 20.nX after shutdown. 2: Slow down and stop according to P01-22 deceleration time, and then stop according to P01- 20.nX setting
P01- 20	2	Stop method for overtravel	 0: Use the settings in P01- 20.nX. 1: Set torque according to P01-21 to decelerate and stop, and servo lock after shutdown. 2: Set torque according to P01-21 to decelerate and shut down, and enter free running state after shutdown. 3: decelerate and stop according to P01-22 deceleration time, and servo lock after shutdown. 4: Slow down and stop according to P01-22 deceleration time, and enter free running state after shutdown.
	3	Method of	0: Use the settings in P01- 20.nX.

	stopping when forced to stop	 Set torque to decelerate shutdown according to P01-21, and use settings in P01- 20.nX after shutdown. Slow down and stop according to P01-22 deceleration time, and use the settings in P01- 20.nX after stopping.
P01-2	emergency stop, fault, deceleratio 1 n stop torque in case of overtravel	Setting range:0-350 Unit: % Set deceleration torque in case of emergency stop, fault and overtravel
P01-22	emergency stop, fault, deceleratio 2 n in case of overtravel shutdown time	Setting range:0-60000 Unit: ms emergency stop, fault, deceleration in case of overtravel shutdown time
P01-29	Brake open to command receive delay	Setting range:0-500 Unit: ms Delay time from brake opening to command reception
P01-3(Static state, brake OFF to motor no power delay	Setting range:0-500 Unit: ms When enabled: After the enable command is executed, the driver will receive the position command after the time of P01-30. Enable OFF: When the motor is in static state, the time from brake closing to non-energized state after executing the enable OFF

		command.
P01-31	Rotation state, brake OFF speed threshold	Setting range:0-6000, unit: rpm Motor speed threshold when the brake output is valid when the motor is rotating. Below this threshold, the brake output command is valid, otherwise it will wait for P01-32 time before the brake output command is valid.
P01-32	Rotation state, servo OFF to brake OFF delay	Setting range:0-1000, unit: ms The longest waiting time of the brake output when the motor is rotating at the time of closing enable.
P01-35	Z signal width setting	Setting range:0-1000, unit: 0.1ms When set to 0, default width When there is a value, the Z signal width is set in time.

8.2.3 P01-xx Gain Class Parameters

param eters code	name	description
P02-00	Position Control Gain 1	 Setting range: 0 - 20000, unit: 0.1/S The proportional gain of the position loop adjuster, the larger the parameter value, the higher the gain proportion, the larger the stiffness, the smaller the position tracking error, and the faster the response. But too large a parameter is easy to cause vibration and overshoot. This parameter is for steady-state response.
P02-01	Position Control	Setting range:0-20000, unit: 0.1/S The proportional gain of the position loop

	Gain 2	adjuster, the larger the parameter value, the higher the gain proportion, the larger the stiffness, the smaller the position tracking error, and the faster the response. But too large a parameter is easy to cause vibration and overshoot. This parameter is for dynamic response.
P02-03	velocity feedforward gain	Setting range:0-100, unit: 1% The feedforward gain of velocity loop, the larger the parameter value, the smaller the position tracking error of system, the faster the response. However, if the feedforward gain is too large, the position loop of the system will be unstable, and overshoot and oscillation will easily occur.
P02-04	velocity feedforward smoothing constant	Setting range:0-64.00, unit: 0.01ms This parameter is used to set the velocity loop feedforward filter time constant. The larger the value, the larger the filtering effect, but the larger the phase lag.
P02-10	Speed proportiona I gain 1	 Setting range: 10-20000, unit: 0.1Hz Speed proportional gain value increases, speed response can be improved, but too large easy to produce vibration, noise. Under the condition that the system does not produce oscillation, increase this parameter value as much as possible. This parameter is for static responses.
P02-11	Velocity integral constant 1	Setting range:15-51200, unit: 0.01ms Speed regulator integration time constant, the smaller the setting value, the faster the integration speed, the greater the stiffness,

		 too small easy to produce vibration, noise. Reduce this parameter value as much as possible without system oscillation. This parameter is for steady-state response.
P02-13	Speed proportiona I gain 2	Setting range: 10-20000, unit: 0.1Hz Speed proportional gain value increases, speed response can be improved, but too large easy to produce vibration, noise. Under the condition that the system does not produce oscillation, increase this parameter value as much as possible. This parameter is for dynamic response.
P02-14	Velocity integral constant 2	 Setting range:15-51200, unit: 0.01ms Speed regulator integration time constant, the smaller the setting value, the faster the integration speed, the greater the stiffness, too small easy to produce vibration, noise. Reduce this parameter value as much as possible without system oscillation. This parameter is for dynamic response.
P02-19	torque feedforward gain	Setting range: 0-200, unit: 1% Set current loop feedforward weighting. This parameter weights the differential of the velocity command and adds it to the current loop.
P02-20	torque feedforward smoothing constant	Setting range:0-6400, unit: 0.01ms This parameter is used to set the torque feedforward filter time constant.
P02-21	friction compensati	Setting range:10-1000, unit: 0.1% Set parameters for responsiveness to external

	on gain	disturbances. The higher the setting value, the better the responsiveness to external disturbances. If the effect is insufficient, increase the friction compensation gain setting value by 10% within the range where vibration does not occur. However, if the device has resonance frequency, vibration may occur if the setting value is too high.
P02-22	2nd Friction Compensati on Gain	Setting range:10-1000, unit: 0.1% Set parameters for responsiveness to external disturbances. The higher the setting value, the better the responsiveness to external disturbances. If the effect is insufficient, increase the friction compensation gain setting value by 10% within the range where vibration does not occur. However, if the device has resonance frequency, vibration may occur if the setting value is too high.
	friction	
P02-23	compensati on	Setting range:0-100, unit: 1% Set parameters for friction compensation effects. The higher the setting value, the better the effect, but the setting value is too high, the response is more likely to vibrate. Usually set the setting value tobelow 95%.
	coefficient	
P02-24	Friction	Setting range:0-10000, unit: 0.1Hz This parameter is used for friction

		compensati on Frequency compensati on	compensation frequency compensation
P02-2	5	friction compensati on gain compensati on	Setting range:1-1000, unit: % This parameter is used for friction compensation gain compensation
P02-	0	Gain switching settings	0: No gain switching. 1: Automatically switch gain according to conditions
30 P02- 30	1	Gain	Setting range:0-9 Conditions for setting the first gain (P02-00, P02-10, P02-11, P08-20) and switching the second gain (P02-01, P02-13, P02-14, P08-21) 0: Positioning completion output signal ON 1: Positioning completion output signal OFF 2: Positioning approach output signal OFF 4: Positioning approach output signal OFF 4: Position command filter output =0 and command pulse input OFF 5: Position command pulse input ON 6: Gain switching IO input active

		7.7-	re speed stat	uc activa		
			ro speed stat			
		-	otor rotation			
			eed consiste			
	Gain		0 0	0000 Unit: 1ms		
P02-31	switching	the s	switch time o	f that second group gain		
	time 1	swite	ched by the fi	rst group gain is set		
	Gain	Setti	Setting range:0-60000 Unit: 1ms			
P02-32	switching	the s	switch time o	f that first group gain		
	time 2	swite	ched by the s	econd group gain is set		
	Gain	Setti	ng range: 0- 2	1000.0, unit: ms		
P02-33	switching	Set t	he first set of	gain switching latency when		
	latency 1	the s	witching con	dition is reached		
	Gain	Setti	ng range:0-10	000.0, unit: ms		
P02-34	switching	the s	second set of	gain switch waiting time is		
	latency 2	set when a switching condition is reached				
		Setti	ng range:0-4			
		Set c	onditions for	PI control and P control of		
		spee	d loop			
		va	judgment	remarks		
		lu	condition			
		e				
	Mode	0	torque	PI control when torque		
P02-	quitch		command	command is less than		
40	function		command	P02-41 threshold, P		
	selection			control when torque		
	Selection			· · ·		
				command is greater than		
				P02-41 threshold.		
		1	speed	PI control when speed		
			command	command is less than		
				P02-42 threshold, P		
				control when speed		

· · · · ·	1			
				command is greater than P02-42 threshold.
		2	accelerati on	PI control when acceleration is less than P02-43, P control when acceleration is greater than P02-43
		3	position deviation	PI control when the position deviation is less than P02-45, P control when it is greater than P02-45.
		4	modeless switch	Speed loop keeps PI control and no longer switches
P02-41	Mode switching torque command threshold	Whe less		50, unit: 1%), when torque command is : driver PI control, greater
P02-42	Mode switch speed command threshold	Setting range:0-6000, unit: rps When P02-40.0=1, when the speed command is less than the set value, the PI control of the driver is greater than the P control.		
P02-43	Mode switch acceleration threshold	Setting range:0-30000, unit: 1rps/s When P02-40.0=2, the acceleration is less than the setpoint PI control of the driver, and greater than P control.		
P02-44	Mode switch	Setting range:0-10000, unit: 1 command unit When P02-40.0=3, when the position		

	position deviation threshold	deviation is less than the set value, the PI control of the driver is greater than the P control.
P02-50	torque command addition	Setting range:-100-100, unit: 1% Valid in position control mode. This value is added to the torque setpoint for vertical axis static moment compensation.
P02-51	positive torque compensati on value	Setting range:-100-100, unit: 1% Valid in position control mode. Used to compensate for forward static friction
P02-52	Negative directional torque compensati on value	Setting range:-100-100, unit: 1% Valid in position control mode. Used to compensate for reverse static friction
P02-53	viscous friction compensati on value	Setting range:0-100, unit: 1%
P02-57	Low frequency vibration suppression settings	Setting range:0-1 0: P02-58, P02-59 Invalid 1: Effective In position mode, it is used to suppress machine shaking caused by positioning.
P02-58	Low frequency vibration Frequency 1	Setting range: 10-2000 Unit: 0.1Hz
P02-59	Low frequency	Setting range: 1 0-1000 Unit: %

		resonance setting 1		
0 P02-		model tracking control selection	Setting range:0-1 0: Do not use model tracking 1: Use model tracking	
60	1	vibration suppression selection	Setting range:0-1 0: No vibration suppression 1: Perform vibration suppression (P02-65,P02-65 works)	
P02-6	1	model tracking control gain	Setting range: 1 0-20000 Unit: 0.1/s When P02-60.0=1, increasing the model tracking control gain increases the responsiveness and shortens the positioning time. The responsiveness of the servo system depends on this parameter	
P02-62 co co		model tracking control gain compensati on	Setting range: 500 - 2000 Unit: 0.1% Increasing the gain compensation of model tracking control results in higher responsiveness and shorter positioning time.	
Model Tracking P02-63 Control Bi (Forward Direction)		Tracking Control Bias (Forward	Setting range: 1 0-1000 Unit: 0.1% When the forward and reverse responses are different, fine tune them with the following parameters. If the setting value is decreased, although the responsiveness becomes slow, overshoot is less likely to occur.	
P02-6	4	Model Setting range: 1 0-10000 Unit: 0.1%		

	(reverse direction)	parameters. If the setting value is decreased, although the responsiveness becomes slow, overshoot is less likely to occur.
P02-65	Vibration Suppression 1 Frequency A	Setting range: 1 0-2500 Unit: 0.1Hz Vibration suppression 1 frequency A. P02-60-1 Active when enabled
P02-66	Vibration Suppression 1 Frequency B	Setting range: 1 0-2500 Unit: 0.1Hz Vibration suppression 1 frequency B. P02-60-1 Active when enabled
P02-67	Model Tracking Control Speed Feedforwar d Compensati on	Setting range: 1 0-1000 Unit: 0.1% When overshoot occurs even if you adjust the Model Tracking Control Gain, Model Tracking Control Bias (Forward Direction), and Model Tracking Control Bias (Reverse Direction), you can improve it by adjusting this parameter. If the setting value is decreased, although the responsiveness becomes slow, overshoot is less likely to occur.
P02-68	Model 2 tracking control gain	Setting range: 1 0-20000 Unit: 0.1/s When P02-60.0=1, increasing the tracking control gain of the second model increases the responsiveness and shortens the positioning time. The responsiveness of the servo system depends on this parameter
P02-69	Model 2 tracking control gain compensati	Setting range: 500 - 2000 Unit: 0.1% Increasing the gain compensation of model tracking control results in higher responsiveness and shorter positioning time.

		on	
P02- 70	0	Speed Suppression Settings	Setting range:0-1 0: Nospeed damping 1:Speed suppression
P02-7	1	velocity suppression frequency	Setting range: 10 - 20000 Unit: 0.1Hz Set speed suppression frequency
P02-7	2	Speed suppression frequency 2	Setting range: 10 - 20000 Unit: 0.1Hz Set speed suppression frequency 2
P02-7	3	velocity suppression gain compensati on	Setting range: 0 - 1000 Unit: 1%
P02-7	4	velocity damping gain	Setting range: 0 - 300 Unit: 1% The larger the value, the stronger the vibration suppression effect.
P02-7	5	Speed Suppression Attenuation Gain 2	Setting range: 0 - 300 Unit: 1% The larger the value, the stronger the vibration suppression effect.
P02-7	6	Speed Suppression Filter Time Parameter 1 Compensati on	Setting range: 0 - 1000 Unit: 0.01ms

P02-77	Speed Suppression Filter Time Parameter 2 Compensati on	Setting range: 0 - 1000 Unit: 0.01ms
P02-88	Current control gain value	Setting range:0-100, unit: 1% This parameter is the current gain adjustment factor

8.2.4 P03-xx position parameters

param ters code		name	description
P03-00)	Location Command Source	0: Pulse command1: Reserved2: Bus instruction3: Built-in multi-stage position
P03- 01	0	command pulse pattern	 0: Quadrature pulse command (90° phase difference two-phase pulse) 1: direction + pulse command 2 or 3: Double Pulse Command (CW+CCW)
P03- 02	0	Overtravel signal clears residual position deviation	0: Overtravel signal does not clear residual position deviation 1: Overtravel signal clears residual position deviation
P03- 03	0	instruction pulse negation	Used to adjust pulse instruction count direction 0: Normal. 1: Reverse direction

	1	command pulse active level negated	0: rising edge count 1: falling edge count		
P03-04	4	instruction pulse filtering	Setting range:0-2000 Unit: 0.1us Command pulse filter width setting, filter width = set value *0.1(us)		
P03-0!	5	Position completion output condition	 0: Position deviation less than P03-06 set value 1: Position deviation is less than P03-06 set value, and the filtered command of position command is 0 2: Position deviation is less than P03-06 set value, and the command after position command is 0. 		
P03-00	6	Location completion range	Setting Range:0-65535 Unit: Command Unit It is used to set the threshold value of the positioning completion output signal, and the set value is the command unit (refer to parameters P03-09, P03-40 and P03-42). The positioning completion range is used as the position gain adjustment judgment basis in the one-key self-adjustment function.		
P03-07		Location approach threshold	Setting Range:0-65535 Unit: Command Unit It is used to set the threshold value of positioning approach output signal, and the set value is the command unit (refer to parameters P03-09, P03-40 and P03-42).		
P03-09	9	Number of	Setting range: 0-1073741823		

	command pulses per revolution of motor	Used to set the number of command pulses for one revolution of motor. When this parameter is set to 0, parameters P03-40 and P03-42 are valid.
P03-15	Position deviation too large setting	Setting range: 0-1073741823 Unit: Command Unit Set the pulse number of allowable deviation, alarm E.501 when exceeding the set value; no detection when set to 0
P03-17	position command moving average time	Setting range: 0-10000 Unit: 0.1ms Set the time constant of the position command smoothing filter, moving average filter.
P03-18	Position command first-order low-pass filtering time parameter	Setting range: 0-65535 Unit: 0.1ms Set the time constant of position command smoothing filter, first order low pass filter.
P03-23	Divided output pulse denominator	Setting range:0-1073741823 When P03-23 equals 0, the number of divided pulses =P03-25*4 ; when P03-23 does not equal 0, the number of divided pulses =2^23*P03-25/P03-23.
P03-25	Number of divided output pulses	Setting range: 0-65535 Set the absolute value motor rotation, A, B frequency pulse output number respectively. Example: Set value 2500, then each rotation of the motor, A and B signals output 2500 pulses each

P03- 26	0	Frequency division output pulse phase sequence inversion	Used to adjust the phase sequence of divided output pulses 0: Normal. 1: Reverse direction
P03-30		Excessive position deviation warning value	Setting range:0-100 Unit: % Excessive position deviation warning value =P03-30 setpoint *P03-15, warning A.900 when setpoint is exceeded
P03-31		Servo ON position deviation excessive alarm value	Unit: Command UnitSetting Range: 0-1073741823 Set the pulse number of allowable deviation when servo is ON. If it exceeds the set value, it will alarm E.503. If it is set to 0, it will not be detected.
P03-33		Servo ON position deviation excessive warning value	Setting range:0-100 Unit: % Servo ON position deviation excessive warning value = set value *P03-31,warning A.901 appears when the set value is exceeded
P03-34		overshoot detection value	Setting range:0-100 Unit: % Overshoot detection threshold = P03-34* P03-06. The overshoot detection value is used as the position gain adjustment judgment basis in the one-button self-adjustment function.
P03-40		Electronic Gear 1 Molecule	See 6.1.4 Electronic Gear Ratio Calculation Example for explanation Note: Encoder numerator 8388608

P03-42	Denominator of electronic gear 1	
P03-44	Electronic Gear 2 Molecules	See6.1.4 Electronic Gear Ratio Calculation
P03-46	Denominator of electronic gear 2	Example for explanation Note: Encoder numerator 8388608

8.2.5 P04-xx Speed Parameters

para meter s code	name	description
P04-0 0	Speed command selection settings	0: analog command 1: Setpoint for P04-02 2: Bus instruction 3: Built-in multi-stage speed
P04-0 1	JOG Speed Command Setpoint	Setting range:0-6000 , unit: rpm Set JOG running speed
P04-0 2	Speed command digital setpoint	Setting range:-6000-6000, unit: rpm When P04-00 is set to 1, P04-02 is the speed setpoint
P04-0 4	Zero-speed clamp speed threshold	Setting range: 0-6000, unit: rpm Set the speed command threshold value that triggers the zero speed position clamp function

		·
P04-0 5	overspeed threshold	Setting range: 0-6300, unit: rpm Set the maximum allowable speed value, exceeding the set value will cause E.420 overspeed alarm.
P04-0 6	forward speed limit	Setting range: 0-6300, unit: rpm Limit motor forward speed value
P04-0 7	reverse speed limit	Setting range: -6300-0, unit: rpm Limit motor reverse speed value
P04-1 0	zero speed detection value	Setting range: 0-2000, unit: rpm Set zero speed detection threshold value, motor speed lower than the threshold can be output through the output port " zero speed detection " signal
P04-1 1	Motor rotation detected speed value	Setting range: 0-2000, singledigit: rpm Set motor rotation detection threshold, motor speed higher than this value can be displayed through the LED panel status
P04-1 2	Speed reaches signal threshold	Setting range: 0-2000, unit: rpm setting the threshold value of the speed consistent signal, and outputting the speed arrival detection signal through the output port when the difference between the motor speed and the command speed is within the threshold value range
P04-1 4	speed command acceleration time	Setting range: 0-10000, singlebit: 1ms/1000rpm Set acceleration for speed control
P04-1 5	Speed command deceleration	Setting range: 0-10000, singlebit: 1ms/1000rpm Set deceleration for speed control

P04-3 0 Internal 0 Int	P04-3 0 1 1Parameters P04-30 to P04-37 set internal speed 1 to internal speed 8, respectively The internal speed switching method is as follows: P04-00 is set to 3 when the speed loop is controlled, The corresponding input port functions are defined as 0D, 0E, 0F Example: Use input signal ports DI3, DI4 an DI5, and define I/O port functions as 0D, 0E and 0F respectively (see P06- 11 parameter description for function definition), and realize speed switching operation corresponding to parameter setting throug I/O level combination.P04-3 7DI3DI4DI5interacti	P04-3 0 104-3Internal speedspeed 1 to internal speed 8, respectively The internal speed switching method is as follows: P04-00 is set to 3 when the speed loop is controlled, The corresponding input port functions are defined as 0D, 0E, 0F Example: Use input signal ports DI3, DI4 and DI5, and define I/O port functions as 0D, 0E and 0F respectively (see P06- 11 parameter description for function definition), and realize speed switching operation corresponding to parameter setting through I/O level combination.	P04-3 0 Internal 0 Internal 0 Internal 0 Parameters P04-30 to P04-37 set internal speed 1 to internal speed 8, respectively The internal speed switching method is as follows: P04-00 is set to 3 when the speed loop is controlled, The corresponding input port functions are defined as 0D, 0E, 0F Example: Use input signal ports DI3, DI4 and DI5, and define I/O port functions as 0D, 0E and 0F respectively (see P06- 11 parameter description for function definition), and realize speed switching operation	Setting range: -6000-6000 singledigit: rpm
0 0 PO4-30 1 0 PO4-31 0 1 0 PO4-32		DI3 DI4 DI5 Interacti	P04-3 settings 1-8 I/O level combination.	P04-3 0Internal Internal annodParameters P04-30 to P04-37 set internal speed 1 to internal speed 8, respectively The internal speed switching method is as follows: P04-00 is set to 3 when the speed loop is controlled, The corresponding input port functions are defined as 0D, 0E, 0F Example: Use input signal ports DI3, DI4 and DI5, and define I/O port functions as 0D, 0E and 0F respectively (see P06- 11 parameter description for function definition), and realize speed switching operation
110P04-33001P04-34101P04-35	1 0 0 P04-31 0 1 0 P04-32 1 1 0 P04-33 0 0 1 P04-34	o o o point ers o o point point <t< td=""><td>DI3 DI4 DI5 Interaction on paramet ers 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1</td><td>P04-3 settings 1-8 I/O level combination. 7 DI3 DI4 DI5 interaction. 0 0 0 P04-30 1 0 0 P04-30 1 1 0 P04-31 0 1 1 P04-33 0 0 1 P04-34</td></t<>	DI3 DI4 DI5 Interaction on paramet ers 0 0 0 1 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 0 1 1 0 1 1	P04-3 settings 1-8 I/O level combination. 7 DI3 DI4 DI5 interaction. 0 0 0 P04-30 1 0 0 P04-30 1 1 0 P04-31 0 1 1 P04-33 0 0 1 P04-34
	1 0 0 P04-31 0 1 0 P04-32	ers 0 0 P04-30 1 0 P04-31 0 1 0 P04-32	DI3 DI4 DI5 Interaction on paramet ers 0 0 0 1 0 0 0 1 0	P04-3 settings 1-8 I/O level combination. 7 DI3 DI4 DI5 interaction. 0 0 0 parameters ers 0 0 0 P04-30 1 0 P04-30 1 0 1 0 P04-31 0 P04-32

8.2.6 P05-xx Torque parameters

para meter s code	name	description
P05-0 0	Torque command selection setting	0: analog command 1: Setpoint for P05-03 2: Bus instruction 3: Built-in multi-stage torque
P05-0 1	Torque Control Speed Limit Source Setting	0: Speed analog command 1: Setpoint for P05-02 2: Bus instruction 3: Built-in multi-stage speed
P05-0 2	torque control speed limit	Setting range: 0-6000Unit: rpm Set the maximum speed of the motor in torque mode to prevent mechanical damage caused by excessive motor speed in no-load Torque control mode active
P05-0 3	Torque command digital setpoint	Setting range:-300-300, unit: % When P05-00 is set to 1, P05-03 is the digital torque setpoint
P05-0 5	Torque Limiting Source Settings	 0: Internal/external torque setting P05-10,5-11 or P05-12,05-13 1: Torque analog command limiting, superimposed with P05- 10, 05 -11 or P05-12, 05 -13 2: Torque analog command limiting, only effective when PCL and NCL are active. P05- 10, 05 -11 or P05- 12, 05 -13 superimposed simultaneously

P05-0 6	Torque limit detection signal	Set DO	range: 0-1000 port output to elay time	00, unit: ms r que limit mediu	m
P05-1 0	output delay Forward internal torque limit	Setting Limit m times to When t value, to	range: 0-350 l otor forward o orque, 300 me orque output	edium signal can l	is 1 Je
P05-1 1	Reverse internal torque limit	Setting Limit m times to When t value, to	range: -350-0 otor reverse c orque, 300 to orque output	Unit: 1% rated to output, set 100 to 3 times torque reaches limit edium signal can l	1
P05-1 2	Forward external torque limit	Setting This fun an exter selected selectio torque switche the por	range: 0-350 f nction needs to rnal input por d DI port input on is set to 7 (J limit value). C d by controllin t. terminal logic effective invalid	Unit: 1% rated tor o be switched by t in CN1, and the port function positive external Control mode can ng the logical stat torque limit External limiting P05-12 Internal limit P05-10 ot assigned, the	using be

		limiting When to value, to output Setting This fun one of to the selection	orque output re orque limit med through DO pou range: 0-350 U action needs to the external inp ected DI porting on to 8 (reverse	eaches limit lium signal can k	que using Set 1
			•	al state of the p	
			terminal	torque limit	
			logic		
P05-1	Reverse external		effective	External	
3	torque limit			limiting P05-13	
			invalid	Internal limit	
				P05-11	
		If this D	I function is no	t assigned, the	
		system	defaults to P05	-11 for torque	
		limiting			
			orque output re		
		-	-	dium signal can b	be
		•	through DO poi	0, singledigit: %	
P05-1		rated to	-	o, singiculart. /0	
4~	Internal setting		•	P05-17 set interr	nal
~ P05-1	torque 1 to 4	torque	1 to internal to	rque 4, respectiv	ely
7		The inte follows:	-	tching method is	s as

P05-00	is set to	o 3 when tor	que loop control
The cor	respon	ding input po	ort functions are
defined	as 11, 3	12	
Exampl	e: Use i	nput signal p	orts DI3 and
DI4. I/C) port fi	unctions are	defined as 11
and 12	respect	tively (see PC	6- 11 parameter
descrip	tion for	function de	finition), and
torque	switchi	ng operation	corresponding
to para	meter s	etting is real	ized through I/O
level co	mbinat	ion.	
DI3	DI4	interactio	
		n	
		paramete	
		rs	
0	0	P05-14	
1	0	P05-15	
0	1	P04-16	
1	1	P04-17	

8.2.7 P06-xx I/O Parameters

paramet er code	name	description
P06-00	Power-on active DI function assignment 1	Setting range: 00-ffff Factory setting: 0Table 1 Corresponding relationshipbetween setting value and correspondingpower-on forced valid input functionset valuePower-on effectivefunction

	T		
		n.xxx1	0x01: Servo enabled
		n.xxx2	0x02: Alarm cleared
		n.xxx4	0x03: Forward Overtravel
		n.xxx8	0x04: Reverse Overtravel
		n.xx1x	0x05: Control mode
			switching
		n.xx2x	undefined
		n.xx4x	0x07: Forward external
			torque limit switching
		n.xx8x	0x08: Reverse external
			torque limit switching
		n.x1xx	0x09: Gain switching
		n.x2xx	0x0A: Zero lock
		n.x4xx	0x0 B: Pulse command
			input disabled
		n.x8xx	undefined
		n.1xxx	0x0 D: Speed multi-stage
			selection 1
		n.2xxx	0x0 E: Speed multi-stage
			selection 2
		n.4xxx	0x0 F: Speed multi-stage
			selection 3
		n.8xxx	0X10: Position Remains
			Command Clear
	Power-on active		e: 00-ffff Factory setting: 0
P06-01	DI function		esponding relationship ting value and corresponding
100-01	assignment 2		rced valid input function
		set value	Power-on effective

				function
			n.xxx1	0X11: Torque multi-stage
				selection 1
			n.xxx2	0X12: Torque multi-stage
				selection 2
			n.xxx4	0x13: Gantry
				synchronization enabled
			n.xxx8	0x14: gantry alignment
				reset signal
			n.xx1x	0x15: home switch signal
			n.xx2x	0x16: Origin Return Start
				Signal
			n.xx4x	0X17: Speed simulation
				command negated
			n.xx8x	0X18: Torque simulation
				command negated
			n.x1xx	0X19: External alarm signal
			n.x2xx	0X1A: Emergency stop
				input signal
			n.x4xx	0X1B: Probe 1 input signal
			n.x8xx	0X1C: Probe 2 input signal
			n.1xxx	0X1D: magnetic pole
				detection request signal
			n.2xxx	OX1E: Position command
				negated signal
P06		speed analog	0: Use Ain_1	(Speed Analog Command
-05	0	command	Interface)	
		selection	1: Use Ain_2	(torque analog command

			interface)
		torque analog	0: Use Ain_2 (torque analog command
	1	1 command	interface)
		selection	1: Use Ain_1 (Speed Analog Command Interface)
			Setting range: 00-1E Factory setting: 1 Servo ON 0x00: None 0x01: Servo Enable 0x02: Alarm Clear 0x03: Forward Overtravel 0x04: Reverse Overtravel 0x05: Control
			Mode Switch
			0x06: P control command input 0x07:
			Forward external torque limit value
P06 -11			switch 0x08: Reverse external torque limit
-11			value switch 0x09: Gain switch 0x0A: Zero
			lock 0x0B: Pulse command input disable
	0	DI1 Terminal	0x0D: Speed multi-stage selection 1 0x0E:
	1	Settings-Functio n Selection	Speed multi-stage selection 2 0x0F: Speed
		II Selection	multi-stage selection 3 0x10: Position
			residual command clear 0x11: Torque
			multi-stage selection 1 0x12: Torque
			multi-stage selection 2 0x13: Gantry
			synchronization enable 0x14: Gantry
		alignment signal clear	
		0x15: home switch signal	
			0x16: Origin return start signal 0x17:
			Speed analog command negated 0x18:
P06			Torque analog command negated 0x19:
-11			External alarm signal 0x1A: Emergency

			stop input signal 0x1B: Probe 1 input signal 0x1C: Probe 2 input signal 0x1D: Magnetic pole detection request signal 0x1E: Position command negated signal Note: Low speed terminal, valid level
			more than 3.2ms to confirm
	2	DI1 Terminal Settings-Logic Select	0: active low (optocoupler off) 1: High active (optocoupler on) 2: Falling edge effective 3: Rising edge effective 4: Rising and falling edge effective
P06	0	DI2 Terminal	
-12 P06	1	Settings-Functio n Selection	See P06-11.01
-12	2	DI2 Terminal Settings-Logic Select	See P06-11.2
P06	0 1	DI3 Terminal Settings-Functio n Selection	See P06-11.01
-13	2	DI3 Terminal Settings-Logic Select	See P06-11.2
P06	0 1	DI4 Terminal Settings-Functio n Selection	See P06-11.01
-14	2	DI4 Terminal Settings-Logic Select	See P06-11.2
P06	0	DI5 Terminal Settings-Functio	See P06-11.01

-15	1	n Selection	
	2	DI5 Terminal Settings-Logic Select	See P06-11.2
P06 -21	01	DO1Terminal Settings-Functio n Selection	Setting range: 0-13, factory setting: 3 servo ready output 0x00: None 0x01: Servo alarm 0x02: Brake output 0x03: Servo ready 0x04: Position arrived 0x05: Position close 0x06: Speed arrival detected 0x07: Zero speed detection 0x08: Moment Limit Medium 0x09: Speed limit in progress 0x0A: Servo warning 0x0B: Reserved 0x0 C: electrical zeroing complete 0x0 D: Return to zero completed 0x0 E: Forward Overtravel 0x0 F: Reverse Overtravel 0x10: Enable status 0x11: Dynamic braking 0x12: Motor rotation detected 0x13: Gain 1 active
	2	DO1 Terminal Settings-Logic Select	0: DO OFF when status is valid 1: DO conduction when status is valid
P06	0 1	DO2 output port active level	See P06-21.01
-22	2	DO2 Terminal Settings-Logic Select	See P06-21.2

	•	DOD 1 1	
	0	DO3 output	See P06-21.01
P06	1	port active level	
-23		DO3 Terminal	
	2	Settings-Logic	See P06-21.2
		Select	
	0	DO4 output	See P06-21.01
P06	1	port active level	500 1 00 21.01
-24		DO4 Terminal	
24	2	Settings-Logic	See P06-21.2
		Select	
			Setting range: 10-2000, singleposition
		Speed analog	1rpm/V
		quantity 1V	Set the coefficient between the analog
P06-4	-0	corresponding	command and the speed control
		speed value	command input by CN1
		speeu value	Example: 500 represents 500 revolutions
			per minute per V
		AI1 filter time	Setting range:0-2500, unit: 0.01ms
P06-4	1		Set AI1 input analog command filter time
		constant	coefficient
			Setting range: -9999-9999,unit V
P06-4	2	AI1 offset	Set analog command zero offset for AI1
			input
			Setting range: 0-100, unit 1%
		Torque analog	Set the coefficient between the analog
	P06-43	quantity 1V	command and the speed control
P06-4		corresponds to	command input by Al1
		torque value	Example: 30 represents 30% of rated
			torque per V
	c	Al1 Analog	Setting range: 0-9999Unit:mv
P06-4	6	Dead Zone	Set the dead-band voltage value of speed

analog command. When analog quantity
is given in the positive and negative
range, the system defaults to zero.

8.2.8 P08-xx advanced functional parameters

param er cod		name	description
P08-	0	Offline inertia identification mode	Setting range:0-1 0: Default mode (set according to P08-03, P08-04 parameters) 1: Internal setting mode (P08-03, P08-04 automatic setting)
00	1	On-line inertia identification mode	Setting range:0-1
P08-01	1	inertia identification inertia initial value	Setting range:0-20000, unit: 1% Set inertiainitial value for inertia identification
P08-02	2	Inertia Identification Motor Rotation Number	Setting range:5-1000, unit: 0.1 turn Setinertia to identify motor rotation number
P08-03	3	inertia identification maximum velocity	Setting range: 10-2000, unit: rpm Set inertia to identify maximum running speed
P08-04	1	inertia identification	Setting range: 20-800, unit: ms Set the acceleration and deceleration time

	acceleration time	of the motor when inertia identification
P08-05	Waiting time after single inertia identification	Setting range: 50-10000, unit: ms Waiting time after single inertia identification
P08-06	JOG mode	Setting range: 0-5 0:(waiting time P08-11-> forward movement P08-07)* movement times P08-12 1:(Wait time P08-11-> Reverse movement P08-07)* Number of movements P08-12 2:(Wait time P08-11-> Forward movement P08-07)* Number of movements P08-12->(Wait time P08-11-> Reverse movement P08-07)* Number of movements P08-12 3:(Wait time P08-11-> Reverse movement P08-07)* Number of movements P08-12->(Wait time P08-11-> Forward movement P08-07)* Number of movements P08-12 4:(Wait time P08-11-> Forward movement P08-07-> Wait time P08-11-> Reverse movement P08-07)* Number of movements P08-12 5:(Wait time P08-11-> Reverse movement P08-07-> Wait time P08-11-> Forward movement P08-07)* Number of movements P08-12 5:(Wait time P08-11-> Forward movement P08-07)* Number of movement P08-07)* Number of
P08-07	Program JOG Move	Setting range: 1-2000, unit: 0.1 turn Number of laps per step when setting JOG

		Distance	program
P08-09		Program JOG Moving Speed	Setting range: 1-10000, unit: rpm Set program JOG to move maximum rpm while running
P08-10		Program JOG Acceleration /Deceleratio n Time	Setting range: 2-10000, unit: ms Set program JOG acceleration and deceleration time during operation
P08-11		Procedure JOG Wait Time	Setting range: 0-10000, unit: ms Set program JOG run wait time
P08-12		Number of JOG moves	Setting range: 0-10000, unit: times Set the number of JOG moves
P08-1 5	0	Auto adjust settings 0	Setting range:0-1 0: self-tuning, inertia identification 1: Self-tuning, no inertia identification
P08-1 5	1	Auto adjust settings 1	Setting range:0-7 0, 1: Standard mode, model tracking off 2: Positioning mode: Turn on end vibration suppression, turn on model tracking, model tracking speed compensation 100% 3: Positioning mode, pay attention to overshoot: turn on end vibration suppression, turn on model tracking, model tracking speed compensation 90%
P08-16		Automatic adjustment of maximum gain	Setting range: 100-7000, unit: 0.1Hz When tuning, search for the maximum gain.
P08-17		velocity	Setting range: 10 - 500, unit: Hz

	observer gain	The higher the setting, the larger the bandwidth of the velocity observer. At 500, the observer is invalid.	
P08-18	velocity observer coefficient	Setting range: 0-500, unit: % The larger the setting, the more effective the speed observer torque effect.	
P08-20 Filter Constant 1 Forque command filter time constant torque command filter time constant when the motor operation appear howling, the value can be appropr		Setting range:0-2500, unit: 0.01ms Torque command filter time constant 1, when the motor operation appears howling, the value can be appropriately set large.	
P08-21	Torque Command Filter Constant 2	Setting range:0-2500, unit: 0.01ms Torque command filter time constant 2, when the motor operation appears howling, the value can be appropriately set large.	
P08-22	Paragraph 2 Torque Command Filter Frequency	Setting range:100-5000, unit: Hz Second-order torque command filter frequency	
P08-23	Paragraph 2 Torque Command Filter Q Value	Setting range:50-100, unit: 0.01 Q value of second-order torque command filter	
P08-2	first trap selection	Setting range:0-1 0: The first trap is invalid, 1: First trap active	
4 1	Second trap	Setting range:0-1	

		selection	0: Second trap invalid	
		Sciection	1: Second trap active	
	3	Friction compensatio n function selection	Setting range:0-1 0: Invalid 1: Effective	
P08-2 5	0	Adaptive Trap 1 Mode Settings	Setting range:0-1 0: Invalid 1: Allow the drive to automatically set the first trap	
	1	Adaptive Trap 2 Mode Settings	Setting range:0-1 0: Invalid 1: Allow the drive to automatically set the second trap	
P08-30		Notch Filter 1 Frequency	Setting range: 300-5000, unit: Hz Center frequency of trap 1. P08-24.0 needs to be set to enable to be effective When set to 5000, trap is invalid	
P08-31Notch Filter 1 WidthSetting range: 50-100 Notch Width Rating f			Setting range: 50-1000 Unit: 0.01 Notch Width Rating for Trap 1 is the ratio of width to center frequency.	
P08-32		Setting range:0-99 Trap Depth Rating for Trap 1 Notch Filter is the ratio between the input and		
P08-33		Notch Filter	P08-30. P08-24.1 needs to be set to	
		2 Frequency	enable to be effective	
P08-34 Notch Filter Same as P08-31		Same as P08-31		

	2 Width	
P08-35	Notch Filter 2 Depth	Same as P08-32
P08-36	Notch filter 3 frequency	Same as P08-30
P08-37	Notch Filter 3 Width	Same as P08-31
P08-38	Notch Filter 3 Depth	Same as P08-32
P08-51	sweep torque amplitude	Setting range: 1- 300 This setting is used as the maximum value of sweep torque when auxiliary function F 22 is performed.

8.3 List of monitoring items

displa y order	display items	description	units
d00.C. PU	position command pulse sum	This parameter can monitor the number of pulses sent by the user to the servo driver, thereby confirming whether there is a missing pulse phenomenon.	instructi on unit
d01.F. PU	position feedback pulse summation	This parameter monitors the number of pulses fed back by the servo motor. The unit corresponds to the unit of the user input command	instructi on unit
d02.E. PU	position deviation pulse number	This parameter monitors the number of pulses with position lag during servo system operation. The unit corresponds to the unit of the user input	instructi on unit

		command	
d03.C. PE	Position given pulse sum/ gantry motor feedback pulse	This parameter monitors the number of pulses the user sends to the servo driver. Unit: When using absolute value motor, calculate by8388608per turn.	encoder unit
d04.F. PE	Position feedback pulse sum/	This parameter monitors the number of pulses fed back by the servo motor. Unit: When using absolute value motor, calculate by8388608per turn.	encoder unit
d05.E. PE	Number of position deviation pulses/ gantry pulse deviation	This parameter monitors the number of pulses with position lag during servo system operation. Unit: When using absolute value motor, calculate according to8388608per turn.	encoder unit
d06.C. Fr	pulse command input frequency	This parameter monitors the external pulse command input frequency	0.1KHz
d07.C. SP	speed command	This parameter can monitor the servo motor when running the given speed servo	rpm
d08.F. SP	actual speed	This parameter monitors the actual rotational speed of the servomotor during operation.	rpm
d09. C.tQ	torque command	This parameter can monitor the servo torque when the servo motor is running	%
d10. F.tQ	actual torque	This parameter can monitor the torque feedback when the servo motor is running	%
d11.A	average torque	This parameter monitors the	%

G.L		average torque of the servo motor over the last 10 seconds	
d12.P E.L	peak torque	This parameter monitors the peak torque of the servo motor after power-up	%
d13.o L	cumulative load factor	This parameter can monitor the load rate of the drive. When it exceeds 1 00, the drive alarms overload.	%
d14.r G	regenerative load factor	This parameter can monitor the duty rate of regenerative resistance. When it exceeds 1 00, the driver alarms regenerative overload.	%
d15.P E.S	peak actual speed	This parameter monitors the peak speed of the servo motor after power-on	rpm
d16.I.I o	Input IO Status	This parameter monitors the input port status of CN1. The upper vertical bar represents high level (optocoupler OFF), and the lower vertical bar represents low level optocoupler ON). The corresponding relationship with the input port is that the vertical bars of the operation panel from right to left correspond to DI1-DI5 respectively.	binary
d17.o .lo	Output IO status	This parameter monitors the output port status of CN1. The upper vertical bar represents optocoupler conduction, the lower vertical bar represents optocoupler disconnection, and the corresponding relationship with the output port is the	binary

		operation panel from right to left. The vertical bars correspond to DO1-DO4 respectively.	
d18.A nG	Motor mechanical angle	This parameter can monitor the mechanical angle of the motor, 1 rotation is 360 degrees	0.1 degrees
d19.H AL	electrical angle	Phase sequence position of incremental encoder motor Electrical angle of absolute encoder	0.1 degrees
d20.A SS	absolute encoder single-turn value	This parameter can monitor the feedback value of absolute encoder, and the value of one rotation varies from 0 to8388607.	decimal
d21.A SH	absolute encoder multiturn value	This parameter monitors the number of revolutions of a multi-turn absolute encoder motor	decimal
d22.J- L	inertia ratio	This parameter monitors the real-time inertia of the load carried by the motor	%
d23.d cp	Main circuit voltage (DC value)	This parameter monitors the DC voltage value of the main circuit	V
d24.A th	drive temperature	This parameter monitors drive temperature	degrees Celsius
d25.ti E	accumulated operation time	This parameter monitors drive uptime in seconds	seconds
d26.1. Fr	resonance frequency 1	This parameter monitors resonance frequency 1, high frequency resonance frequency	Hz
d28.2. Fr	Resonance frequency 2	This parameter monitors resonance frequency 2, low frequency resonance frequency	Hz
d29.c	current control	This parameter can monitor the	

n	mode	current control mode. Refer to parameter P01-01 parameter table for specific corresponding relationship.		
d30.A i1	Ai1 port input voltage	This parameter monitors the Ai1 input voltage value	0.001V	
d31.A i2	Ai2 port input voltage	This parameter monitors the Ai2 input voltage value (none for P28 series)	0.001V	
	Number of	This parameter can monitor the		
d32.c.	encoder	abnormal times of encoder		
Er	communicatio	communication after power-on.		
	n anomalies			
	Hardware	This parameter monitors the		
d33.H	model	drive type (hardware power		
u35.11	(hardware	information)		
	information)			
d34.H	hardware	This parameter monitors the		
1	version	hardware version number		
		This parameter monitors		
d35.S	software	software versions		
1	version	First 2 digits: FPGAversion; Last		
		2 digits: ARM version		
d36.C.	position	This parameter monitors the	instructi	
PU	command	position command pulse sum	on unit	
	pulse sum	(accumulated after power-up)		
d37.F.	position	This parameter monitors the	instructi	
PU	feedback pulse	sum of position feedback pulses	on unit	
	summation	(accumulated after power-up)		
d38.	Parameter	This parameter can querythe		

P. Er	number of	exception parameter number	
	value	when alarm 1 07	
	exception		
d39.A	Advanced	This parameter queries warning	
	functional	codes when performing	
du	exception code	advanced functional exceptions	

8.4 accessibility

display items	function	operation
F01.JoG	JOG commission ing	 Press theM keyon the operation panel to switch to the auxiliary modeF**, operate theUp/Down key toF01.JoG, press theENT key to enter the Jog operation mode. The default Jog speed is 30rpm (P04-01 sets JOG running speed). Press theUp button, the motor rotates forward at 30r/min; press theDown button, the motor rotates backward at 30r/min. Press theM key to exit Jog mode.
F02.run	Force enable operating speed mode	 Press the M keyon the operation panel to switch to the auxiliary modeF**, operate theUp/Down key toF02.run, press theENT key to enter the operation mode. Press theUp key, the motor rotates forward, pressthe Up key for along time, the motor speed will increase continuously; pressthe Down key, the motor rotates backward, pressthe Down key for alongtime, the motor speed will increase continuously. Press theM key to exit this mode.
F03.Ai1	Analog Input 1	1. Press the M key of the operation panel to switch to the auxiliary mode F **, operate

	Automatic Zero Drift Calibration (VCMD)	the Up/Down key to F03.Ai1 , press the ENT key to display of.Ai1 . 2. Press ENT key for a long timeuntil finsh flashes, i.e., Ai1 zero drift automatic calibration is completed. 3. Press the M key to exit this mode.	
F04.Ai2	Analog Input 2 Automatic Zero Drift Calibration (TCMD)	 Press the M key of the operation panel to switch to the auxiliary mode F**, operate the Up/Down key to F04.Ai2, press the ENT key to display of Ai2. Press ENT key for a long time until finsh flashes, i.e., Ai2 zero drift automatic calibration is completed. Press the M key to exit this mode 	
F05.Ai3	Automatic zero drift compensati on of current sensor	Same as F03.Ai1 Note: When performing this function, the servo must be in the OFF enable state, otherwise the finsh flashing page will not appear, and the automatic calibration cannot be completed.	
F06.En0	Absolute encoder fault clearing	The auxiliary function shall be operated in the disabled state as follows 1. Press the M key of the operation panel to switch to the auxiliary mode F **, operate the Up/Down key to F06.En0 , press the ENT key,clr.Ft will be displayed. 2. Press ENT key for a long time until finsh flashes to complete the absolute encoder fault clearing. 3. Press the M key to exit this mode.	
F07.En1	Absolute encoder multi-turn value reset	The auxiliary function shall be operated in the disabled state as follows 1. Press the M key of the operation panel to switch to the auxiliary mode F **, operate the Up/Down key to F07.En1 , press the ENT key , clr.EH will be displayed. 2. Press ENT key for a longtime until finsh	

		flashes, which completes multi-turn value		
		clearing of absolute value encoder.		
		3. Press the M key to exit this mode.		
		The auxiliary function shall be operated in		
			bled state as follows	
			factory reset interface: press M	
		key of operation panel to switch to auxiliary		
			*, operate Up/Down key to F10.ini , T key to enter	
			-	
			recovery parameter range: press wing table to enter the	
			onding code and select the	
	restore the		er range to be recovered. PressENT	
F10.ini	factory		along timeand the progress bar will	
	settings		until finsh flashes, i.e. factory reset is	
	0	complet		
		code	meaning	
		51	Restore Level 1 Permission	
			Parameters (Application	
			Parameters)	
		52	Restore Level 2 Permission	
			Parameters (Application	
			Parameters + Motor Parameters)	
		55	Restore all parameters (including	
			hidden parameters)	
			the M key on the operation panel to	
		switch to the auxiliary mode F** , operate		
		the Up/Down key to F11.Err , press the ENT		
			isplay the historical fault	
F11.Err		information of the past 8 times. The		
	fault log	number on the left is F0, which represents		
	display	the mos	t recent fault.	
			ng the Up key displays past faults	
			one. PressENT key for along timeto	
		display the fault occurrence time. Refer to		
		d25.tiE for time coordinate.		
		3. Press the M key to exit this mode.		

		Note: The fault occurred during multiple	
		power ups and downs within 30 minutes	
		may have a 30-minute deviation in	
		recording time.	
		1. Press the M key on the operation panel to	
		switch to the auxiliary mode F** , operate	
	alarm	the Up/Down key to F12.clr , press the ENT	
F12.clr	record	key to displayclr.Er onthe panel, press the	
	clearing	ENT key to clear the alarm information	
	_	recorded in F11.Err.	
		2. Press the M key to exit this mode.	
		1. Press the M key on the operation panel to	
		switch to the auxiliary mode F** , operate	
		the Up/Down key to F13.unL, and press	
		the ENT key to edit the operation authority.	
	operation permission setting	0: Parameters cannot be modified;1:	
F13.unL		Parameters can be modified (except system	
		parameters);2: All visible parameters can be	
		modified; Set values of 0 and 1, which can	
		be saved after power failure. When setting	
		2, power-off is not saved.	
		2. Press the M key to exit this mode.	
		1. Press the M key of the operation panel to	
		switch to the auxiliary mode F** , and	
		operate the Up/Down key to F14. out ,	
	Force	press ENT key, you can force the output	
F14.	output port	port level through Up/Down key . The	
out		corresponding relationship with the output	
		port is that the vertical bars of the	
		operation panel from right to left	
		correspond to DO1-DO4 respectively.	
		2. Press the M key to exit this mode.	
		1. Press the M key on the operation panel to	
	software reset	switch to the auxiliary mode F** , operate	
F17.rES		theUp/Down key toF17.rES, press theENT	
		key to display rESEt on the panel, press	
		the ENT key to reset the software.	

	2. Press the M key to exit this mode.			
F18.PJG	Program JOG	 Press the M key on the operation panel to switch to the auxiliary mode F**, operate the Up/Down key to F18.PJG, and press the ENT key to execute the program J OG function. Press UP key or DOWN key, and the motor will operate according to the operating conditions set by P08 - 06~P08 - 12. Press theM key to exit this mode. Note: This mode can only be operated underrdy, otherwise the driver alarms A.905 		
F19.J-L	Load inertia ratio measureme nt	 Press the M keyof the operation panel to switch to the auxiliary modeF**, operate theUp/Down key toF19.J-L, press theENT key to enter the load inertia measurement function, the panel displays 1.00, pressthe ENT key for a long time, and the panel displays-1.00. PressUP key, motor will run back and forth according to the number of turns set by P08-02, maximum speed set by P08-03, acceleration and deceleration time set by P08-04 and waiting time set by P08-05 until flashing load inertia ratio appears. At this time, press ent to save directly to P01 - 04, or record this value to exit and write parameter P01 - 04 Press theM key to exit this mode Note: This mode can only be operated underrdy, otherwise the driver alarms A.905 		

Chapter IX Fault Analysis and Handling

9.1 Fault alarm information table

alarm type	serial number	alarm content
	E.051	EEPROM parameter exception
	E.052	FPGA communication exception
	E.053	initial failure
	E.054	arithmetic timeout
	E.060	hardware match exception
	E.061	Abnormal motor and driver combination
	E.063	overcurrent detection
	E.064	Motor overcurrent detection
	E.068	Driver DC bus overcurrent detection
hardware	E.069	FPGA clock exception
failure	E.071	U-phase current detection abnormality
	E.072	W-phase current detection abnormality
	E.100	parameter combination anomaly
	E.102	DI port assignment exception
	E.106	Divider output setting abnormal
	E.107	parameter anomaly
	E.108	Parameter setting out of range
	E.120	Servo ON command invalid alarm
	E.121	External input alarm signal
	E.305	Motor cable break
	E.400	Power line phase loss
	E.401	undervoltage

		11
	E.402	overvoltage
	E.410	instantaneous overload
	E.412	continuous overload
	E.420	motor overspeed
operation	E.421	out-of-control detection
fault	E.430	regeneration anomaly
	E.431	regenerative overload
	E.435	surge current limiting resistor overload
	E.436	DB overload
	E.440	Drive temperature anomaly
	E.501	Excessive deviation of position
	E.503	Excessive position deviation when servo ON
	E.510	Gantry position deviation is too large
	E.511	Gantry shaft alarm
	E.520	vibrating alarm
	E.521	Self-adjusting vibration alarm
	E.620	encoder off-line
	E.621	Encoder built-in data mismatch
	E.622	Encoder built-in data check error
	E.641	Encoder overheating (encoder internal)
the encoder failure	E.643	Encoder battery voltage fault (encoder
		internal)
	E.644	Encoder multi-turn data exception (encoder internal)
	E.645	Encoder multiturn count overflow (encoder
	L.04J	internal)
	E.646	Encoder communication failure
	E.649	Encoder communication CRC failure

A.900	Excessive deviation of position
A.901	Excessive position deviation when servo ON
	Auxiliary (F**) function cannot be executed
A.905	when servo is ON
A.910	overload
A.911	vibration
A.912	Control panel temperature anomaly
A.913	Drive temperature anomaly
A.920	regenerative overload
A.921	DB overload
A.923	Servo unit internal fan stops
A.930	Encoder Battery Low Voltage
A.941	Parameter changes requiring re-powering
A.942	EEPROM write failure
A.950	overtravel
A.960	Input terminal duplicate definition
A.971	undervoltage
A.995	Advanced assistive dysfunction
	A.901 A.905 A.910 A.911 A.912 A.913 A.920 A.920 A.921 A.923 A.930 A.930 A.941 A.942 A.942 A.950 A.960 A.971

9.2 Fault alarm cause and disposal

E.051: EEPROM Parameter Exception

Fault alarm cause	fault alarm check	disposal measures
Servo unit EEPROM	Perform factory	If it persists, replace
data exception	initialization (F10.INI)	the drive

E.052: FPGA communication anomaly

Fault alarm cause	fault alarm check	disposal measures
Power-on initialization abnormality of	powered on again	Alarm off by setting parameter Pn044 If it persists, replace

master MCU	the drive

E.053: Initialize failed

Fault alarm cause	fault alarm check	disposal measures
Power-on initialization failure of master MCU	powered on again	If it persists, replace the drive

E.054: Arithmetic timeout

Fault alarm cause	fault alarm check	disposal measures
arithmetic timeout	powered on again	If it persists, replace the drive

E.060: Hardware mismatch error

Fault alarm cause	fault alarm check	disposal measures
Hardware mismatch	Perform factory	If it persists, contact
error	initialization (F10.INI)	the manufacturer

E.061: Abnormal motor and drive combination

Fault alarm cause	fault alarm check	disposal measures
The servo unit does	Check whether the	Replace servo unit
not match the servo	servo unit supports	matching motor
motor model	the motor	

E.063: Overcurrent detection

Fault alarm cause	fault alarm check	disposal measures
Short circuit between U,V and W	Is there a short circuit in U,V,W wiring? Is there a short circuit between B1 and B3?	correct wiring If there is no alarm, check the power line and motor for short circuit.
drive corruption	Disconnect the U,V,W cables on the drive and enable the drive	If the U,V,W connections are disconnected and the startup drive still alarms, replace the drive

E.064: Motor overcurrent detection

Fault alarm cause	fault alarm check	disposal measures
Short circuit between U,V and W	Is there a short circuit in U,V,W wiring? Is there a short circuit between B1 and B3?	correct wiring If there is no alarm, check the power line and motor for short circuit.
drive corruption	Disconnect the U,V,W cables on the drive and enable the drive	If the U,V,W connections are disconnected and the startup drive still alarms, replace the drive

E.068: Driver DC Bus Overcurrent Detection

Fault alarm cause	fault alarm check	disposal measures
U,V,W short to earth	Check if wiring is	Correct wiring,
PE	correct	replace motor wire
	Remove the motor	and motor.
	power cable and try	If it persists, replace
		the drive

E.069: FPGA clock anomaly

Fault alarm cause	fault alarm check	disposal measures
FPGA clock exception	FPGA clock exception	P00-47.1 Set 0 to turn off alarm If it persists, replace the drive

E.071: Abnormal detection of U-phase current

Fault alarm cause	fault alarm check	disposal measures
Current sensor	Check whether UVW	correct wiring
sampling data	wiring is correct and	P00-46.2 Set 0 to turn
abnormal	reliable	off alarm
		If it persists, replace
		the drive

E.072: Abnormal detection of W-phase current

Fault alarm cause	fault alarm check	disposal measures
Current sensor	Check whether UVW	correct wiring
sampling data	wiring is correct and	P00-46.3 Set 0 to turn
abnormal	reliable	off alarm
		If it persists, replace
		the drive

E.100: Abnormal parameter combination

Fault alarm cause	fault alarm check	disposal measures
Parameter setting	Check set parameters	Set parameters
error		correctly
		If it always appears,
		initialize the
		parameters

E.102: DI Port Assignment Exception

	•	
Fault alarm cause	fault alarm check	disposal measures
At least 2 input ports	Check input port	Set parameters
have the same	function selection	correctly
function selection	parameters (P06-11,	Perform parameter
	P06-12)	initialization,
		power-up again

E.106: Abnormal setting of divided pulse output

Fault alarm cause	fault alarm check	disposal measures
Frequency division pulse output parameter setting out of range	Check the Divided Pulse Output setting parameters. P03-25	Correct setting of frequency division pulse output parameters Bus encoder P03-25 65535 Drive Power Back On

E.107: Parameter anomaly

Fault alarm cause	fault alarm check	disposal measures
-------------------	-------------------	-------------------

parameter anomaly	Check whether the	Set parameters
	parameter range is	correctly
	reasonable	Perform parameter
		initialization

E.108: Parameter setting out of range

	•	
Fault alarm cause	fault alarm check	disposal measures
Parameter setting	Check whether the	Set parameters
out of range	parameter range is	correctly
	reasonable	Perform parameter
		initialization

E.120: Servo ON command invalid alarm

Fault alarm cause	fault alarm check	disposal measures
When servo is ON,	Check wiring and	check the wiring
power supply input	input voltage	Drive Power Back On
ports L1, L2 and L3		
are not powered.		

E.121: External input alarm signal

Fault alarm cause	fault alarm check	disposal measures
External input alarm signal	Check whether there is signal input at the external input port and whether the relevant parameters of I/O port are correct.	Correct use of external input alarm IO signals

E.305: Broken motor cable

Fault alarm cause	fault alarm check	disposal measures
Motor cable break	Check whether UVW	Ensure UVW wiring is
	wiring is correct and	correct and reliable

reliable	P00-47.0 Set 0 to turn
	off alarm

E.400: Loss of phase in power line

Fault alarm cause	fault alarm check	disposal measures
Main loop input power line phase loss	Check whether the main circuit input L1,L2 and L3 are connected.	Ensure correct wiring, use correct voltage source or series voltage regulator P00-39.0 Phase loss alarm can be turned off

E.401: Undervoltage

Fault alarm cause	fault alarm check	disposal measures
Input voltage of main	Check whether the	Ensure correct wiring,
circuit is lower than	main circuit input	use correct voltage
rated voltage or no	L1,L2,L3 wiring is	source or series
input voltage	correct, and voltage	voltage regulator
	value is what volt. Bus	P00-52 Alarm
	voltage can be	threshold can be
	monitored via	modified
	d23.dcp	

E.402: Overvoltage

0		
Fault alarm cause	fault alarm check	disposal measures
Main circuit input	Use voltmeter to test	Use the correct
voltage too high	whether the input	voltage source or
	voltage of main	series regulator
	circuit is correct	
Unconnected	Check if the	Correctly connect
regenerative resistor	appropriate	matching regenerative
or incorrect	regenerative resistor	resistors
regenerative resistor	is connected	
selection		
Incorrect parameter	Confirm that the	Correct setting of
settings	parameter settings of	parameters and

	P00-30~P00-34 are consistent with the resistor connection mode	external regenerative resistance
Drive hardware failure	Over-voltage alarm still exists after confirming correct input voltage	Please return to dealer or factory for repair

E.410: Transient overload

Fault alarm cause	fault alarm check	disposal measures
When the motor	Check mechanical	Adjust the mechanical
starts, the machine	connections for	structure
is stuck.	jamming	
P00-50 Parameter	Check P00-50	Correct setting of
setting is	parameter values	P00-50 parameters
unreasonable		
Drive hardware	Confirm that the	Please return to
failure	mechanical part is	dealer or factory for
	normal and still alarm	repair

E.412: Continuous overload

Fault alarm cause	fault alarm check	disposal measures
Continuous use	Monitoring can be performed via d13.oL.	Change to higher
exceeding the rated load of the drive	in monitoring mode	power motor or reduce load
Improper control system parameter setting	 Whether the mechanical system is installed Acceleration setting constant is too fast Whether the gain parameters are set 	 Adjust the gain of control loop Acceleration and deceleration setting time slows down
	correctly	
Motor wiring error	Check U, V, W wiring	correct wiring

E. 420: Overspeed

Fault alarm cause	fault alarm check	disposal measures
Input speed	Check whether the	Adjust the frequency
command too high	input signal is normal	of the input signal
Unreasonable setting	Check whether	Correct setting of
of parameters for	P04-05 (overspeed	P04-05 (overspeed
over-speed judgment	alarm value) is set	alarm value)
	properly	-

E.421: Out-of-control detection

Fault alarm cause	fault alarm check	disposal measures
Motor power lines U,V,W wiring error	check the wiring	correct wiring
Incorrect motor parameter settings	Check whether P00-05; and encoder parameters are set correctly	Set parameters correctly Set P00-46.1 to 0 Close runaway detection

E.430: Regeneration anomaly

5	,	
Fault alarm cause	fault alarm check	disposal measures
Wrong choice of	Check the connection	If the connection is
regenerative resistor	condition of	normal, please return
or no external	regenerative resistor	the drive to the
regenerative resistor		factory for
		maintenance.
		P0-44.2can be set
Parameter setting	Please confirm	Set parameter values
error	theparameter setting	correctly
	ofP0-30~ P 0 -34	

E.431: Regeneration overload

Fault alarm cause	fault alarm check	disposal measures
Wrong choice of	Check the connection	Select the
regenerative resistor	condition of	appropriate
or no external	regenerative resistor	regenerative resistor

regenerative resistor	and whether the resistance value and power of regenerative resistor are suitable.	
Incorrect parameter settings	Confirm whether parameters P00-30~P00-35 are correct	Set parameter values correctly

E.435: Impulse current limiting resistor overload

Fault alarm cause	fault alarm check	disposal measures
Drive power supply		PO-44can be set
frequent power-up		toturn off the alarm

E.436: DB overload

Fault alarm cause	fault alarm check	disposal measures
Motor driven by external force (rdy state)	Confirm operational status	Do not use excessive force to push SetPO- 46 to close the alarm
DB, rotational energy greater than DB resistance capacity	Check motor running speed Evaluate if load inertia is excessive	Reduce servo motor command speed Reduce load moment of inertia Reduce the number of DB stops

E.440: Heat sink overheating

Fault alarm cause	fault alarm check	disposal measures
Drive internal temperature above P00-41 setpoint	Check if the drive is in good thermal condition	Improve the heat dissipation condition of the drive. If the alarm still occurs, please return the drive to the factory for maintenance.

Overheat alarm	Check parametersP0-	Set PO-41
threshold set too low	41	

E.501: Excessive positional deviation

· · ·		
Fault alarm cause	fault alarm check	disposal measures
Position deviation is	Confirm parameter	Increase P0 3-15
too large, parameter	setting of PO 3-15	(excessive position
setting is too small	(excessive position	deviation setting)
	deviation setting)	setting
Gain value set too	Confirm whether gain	Correct adjustment of
low	parameters are set	gain class parameters
	reasonably	
Internal torque limit	Confirm internal	Correct readjustment
set too low	torque limit	of internal torque
	-	limits
Excessive external	Check external loads	Reduce load or
load		replace high-power
		motor

E.503: Excessive position deviation when servo ON

Fault alarm cause	fault alarm check	disposal measures
Excessive position	Confirmparameter	Correctly set relevant
deviation when	settingof P03-30,	parameters
servo ON	P03-31 and P0 3-3 3	
Gain value set too	Confirm whether gain	Correct adjustment of
low	parameters are set	gain class parameters
	reasonably	
Internal torque limit	Confirm internal	Correct readjustment
set too low	torque limit	of internal torque
		limits
Excessive external	Check external loads	Reduce load or
load		replace high-power
		motor

E.510: Gantry position deviation is too large

<i>,</i> ,	0	
Fault alarm cause	fault alarm check	disposal measures

Gantry position deviation is too large	Confirm P03-53 parameter setting	Set parameter values correctly
Gain value set too low	Confirm whether gain parameters are set reasonably	Correct adjustment of gain class parameters
Internal torque limit set too low	Confirm internal torque limit	Correct readjustment of internal torque limits
Excessive external load	Check external loads	Reduce load or replace high-power motor

E.511: Gantry shaft alarm

Fault alarm cause	fault alarm check	disposal measures
The dual axis drive, P 00-39, has an axis correlation alarm set and an axis alarm.	Check whether each axis alarms	Alarm (other alarms) troubleshooting
Two-axis drive, open gantry function, with one axis alarm	Check whether each axis alarms	Alarm (other alarms) troubleshooting

E.520: Vibrating alarm

5		
Fault alarm cause	fault alarm check	disposal measures
Abnormal vibration	Confirm abnormal	Reduce motor speed.
of motor speed detected	sound of motor and speed and torque	or reduce speed loop gain (P02-10)
	waveform during	Bann (1 02 10)
	operation.	
The value of the	Confirm load moment	Set appropriate
moment of inertia	of inertia ratio	moment of inertia
ratio (P01-04) is		ratio (P01-04)
larger than the		P01-10 can be set to
actual value or		turn off the alarm
changes greatly.		

E.521: Self-adjusting	vibration alarm
-----------------------	-----------------

Fault alarm cause	fault alarm check	disposal measures
When using the adjustment-free function (factory setting), the motor vibrates excessively.	Confirm the waveform of motor speed.	Reduce the load moment of inertia ratio below tolerance, or increase the tuning value of the adjustment-free value setting (Fn200), or decrease the gain value.
Motor vibration is high when performing advanced autotuning, single parameter tuning, EasyFFT	Confirm the waveform of motor speed.	The processing method described in the operation procedure for implementing each function

E.620: encoder off-line

Fault alarm cause	fault alarm check	disposal measures
Bus encoder communication failure	Check encoder wiring	correct wiring

E.621: Encoder built-in data mismatch

Fault alarm cause	fault alarm check	disposal measures
Encoder read/write	Check encoder wiring,	correct wiring
exception		
Abnormal motor	Correctly set the	Set parameters
parameter setting	motor parameters of	correctly
	P00-00~ P00-19	

E.622: Encoder built-in data check error

Fault alarm cause	fault alarm check	disposal measures
Encoder built-in data	Check encoder wiring	If the connection is
check error	Verify encoder shield	normal, please return

	the drive to the factory for
	maintenance.

E.641: Encoder overheating (encoder internal)

Fault alarm cause	fault alarm check	disposal measures
Encoder overheating (encoder internal)	Check encoder temperature	If the temperature is normal, the alarm can be cleared by F06.EN0 Modify parameter P00-07.2 Turn off alarm

E.643: Bus encoder battery failure

Fault alarm cause	fault alarm check	disposal measures
When bus encoder is set to multi-turn absolute value, external battery voltage is low	Check the voltage of external battery of encoder and confirm it is higher than 3.0V.	When the battery voltage is lower than 3.0V, replace the battery and Above 3V use auxiliary function F06.EN0 clear alarm Alarm can be switched off via parameter P00-07

E.644: Bus encoder multi-turn exception

Fault alarm cause	fault alarm check	disposal measures
Bus encoder turns out of range	The number of turns can be monitored by monitoring mode d21.ASH, and the multi-turn absolute motor cannot rotate in one direction for a long time.	Clear multiturn values using command F07.En1

E.645: Bus encoder multi-turn overflow fault

Fault alarm cause	fault alarm check	disposal measures
Bus encoder turns	The number of turns	Alarm can be cleared
out of range	can be monitored by	via F06.EN0
	monitoring mode	Clear multiturn values
	d21.ASH, and the	using command
	multi-turn absolute	F07.En1
	motor cannot rotate	Alarm can be
	in one direction for a	switched off via
	long time.	parameter P00-07

E.646: Encoder communication failure

Fault alarm cause	fault alarm check	disposal measures
Encoder communication failure	check the encoder	Correct installation of encoder
Tunure		

E.649: Encoder communication CRC failure

Fault alarm cause	fault alarm check	disposal measures
Encoder communication CRC failure	check the encoder	Correct installation of encoder

A.900: Excessive positional deviation

Fault alarm cause	fault alarm check	disposal measures
Excessive position	Confirmparameter	Increase P03-15/P 0 3
deviation warning	settingofP03-15/P03-	-30 (excessive
	30 (excessive position	position deviation
	deviation setting)	setting) setting
Gain value set too	Confirm whether gain	Correct adjustment of
low	parameters are set	gain class parameters
	reasonably	
Internal torque limit	Confirm internal	Correct readjustment
set too low	torque limit	of internal torque
		limits
Excessive external	Check external loads	Reduce load or

load	replace high-power
	motor

A.901: Excessive position deviation when servo ON

· · ·		
Fault alarm cause	fault alarm check	disposal measures
Excessive position	Confirmparameter	Increase P03-31/P 0 3
deviation when	settingofP03-31/P03-	-33 setpoint
servo ON	33	
Pulse command	Pulse command	Reduce servo ON
frequency too high	frequency too high	pulse command
when servo ON	when servo ON	frequency

A.905: FN function cannot be performed when servo is ON

Fault alarm cause	fault alarm check	disposal measures
FN function cannot	FN function cannot be	When SV-OFF, FN
be performed when	performed when	function is executed
servo is ON	servo is ON	

A.910: Overload warning

A.510. Overload warrin	<u>v</u>	
Fault alarm cause	fault alarm check	disposal measures
overload warning	Monitoring can be performed via d13.oL. in monitoring mode	Increase P00-51 appropriately (overload warning value)
Improper control system parameter setting	 Whether the mechanical system is installed Acceleration setting constant is too fast Whether the gain parameters are set correctly 	 Adjust the gain of control loop Increase acceleration and deceleration time
Motor wiring error	Check U, V, W wiring	correct wiring

A.911: Vibration warning

Fault alarm cause fault alarm check disposal measures	Fault alarm cause	fault alarm check	disposal measures
---	-------------------	-------------------	-------------------

Abnormal vibration of motor speed detected	Confirm abnormal sound of motor and speed and torque waveform during operation.	Reduce motor speed. or reduce speed loop gain (P02-10)
The value of the moment of inertia ratio (P01-04) is larger than the actual value or changes greatly.	Confirm load moment of inertia ratio	Set appropriate moment of inertia ratio (P01-04) P01-10 can be set to turn off the alarm

A.912: Control board temperature abnormal

	•	
Fault alarm cause	fault alarm check	disposal measures
Control panel	Check Drive	Improved driver heat
temperature	Temperature	dissipation
anomaly	Does the cooling fan	Drive temperature
	work properly?	alarm still under
		normal conditions,
		replace the drive

A.913: Drive Temperature Exception

Fault alarm cause	fault alarm check	disposal measures
Drive temperature anomaly	Drive temperature monitoring can be performed via d24.Ath in monitor mode	Improved driver heat dissipation Drive temperature alarm still under normal conditions, replace the drive

A.920: Regeneration overload warning

Fault alarm cause	fault alarm check	disposal measures
Wrong choice of	Check the connection	Select the
regenerative resistor	condition of	appropriate
or no external	regenerative resistor	regenerative resistor
regenerative resistor	and whether the	_

	resistance value and power of regenerative	
· · · ·	resistor are suitable.	
Incorrect parameter	Confirm whether	Set parameter values
settings	parameters	correctly
	P00-30~P00-35 are	
	correct	

A.930: Absolute encoder battery failure

Fault alarm cause	fault alarm check	disposal measures
Absolute encoder	Check the voltage of external battery of	Battery voltage below 3.0V, replace battery
battery failure	encoder and confirm	Use command
	it is higher than 3.0V.	F06.En0 to clear
		when above

A.941: Parameter change requires power-off and restart to take effect

Fault alarm cause	fault alarm check	disposal measures
After modifying	After modifying	Power off, restart.
parameters, it is	parameters, it is	
necessary to power	necessary to power	
on again and the	on again and the	
parameters will take	parameters will take	
effect.	effect.	

A.960: Input terminal duplicate definition

Fault alarm cause	fault alarm check	disposal measures
Input terminal duplicate definition	Check whether there is signal input at the external input port and whether the relevant parameters of I/O port are correct.	Correctly set relevant parameters

A.971: Undervoltage warning

Fault alarm cause	fault alarm check	disposal measures
Input voltage of main	Check whether the	Ensure correct wiring,
circuit is lower than	main circuit input	use correct voltage
rated voltage or no	L1,L2,L3 wiring is	source or series
input voltage	correct, and voltage	voltage regulator
	value is what volt. Bus	P00-52 Alarm
	voltage can be	thresholds can be
	monitored via	modified or turned
	d23.dcp	off

Chapter X Communication

10.1 Modbus communication parameter setting

para meter code	names	note
P00-2	slave address	Setting range: 0-255, default 1
3	slave address	Set according to equipment requirements
P00-2	Modbus	Setting range: 0-7, default 2
4.0	communicatio	0: 2400

	n baud rate	1: 4800 2: 9600 3: 19200 4: 38400 5: 57600 6: 115200 7: 25600
P00-2 4.1	verification mode	Setting range: 0-3, default 0 0: no check, 2 stop bits 1: even check, 1 stop bit 2: odd parity, 1 stop bit 3: No check, 1 stop bit
P00-2 6	Modbus communicatio n response delay	Setting range: 0-100, default 0 When the parameter is set to 0, respond according to standard communication. When the parameter is set to 0, Modbus communication response time responds according to the set time.

10.2 Modbus communication supports reading and writing parameter setting

Support reading monitoring project address list

monito	defined	units	decimal
ring			communication address
project			(double address, high order
			first)

d00.C.		:	2100 2101
	position	instructi	2100-2101
PU	command pulse	on unit	
	sum		
d01.F.P	position	instructi	2102-2103
U	feedback pulse	on unit	
	summation		
d02.E.	position	instructi	2104-2105
PU	deviation	on unit	
d03.C.	position	encoder	2106-2107
PE	command pulse	unit	
	sum		
d04.F.P	position	encoder	2108-2109
E	feedback pulse	unit	
	summation		
d05.E.	position	encoder	2110-2111
PE	deviation	unit	
d06.C.	input pulse	Кр	2112
Fr	velocity	ps	
d07.C.	speed	rp	2113
SP	command	m	
d08.F.S	actual speed	rp	2114
Р		m	
d09.C.t	torque	%	2115
q	command		
d10.F.t	actual torque	%	2116
q			
d11.A	average load	%	2117
G.L	rate		

d12.PE	actual torque	%	2118
.L	peak		
d13.oL	cumulative	%	2119
	load factor		
d14.rG	regenerative	%	2120
	load factor		
d15.PE	peak actual	rp	2121
.S	speed	m	
d16.I.I	input signal	bin	2122
0	monitoring	ary	
d17.o.l	output signal	bin	2123
0	monitoring	ary	
d18.An	mechanical	0.1	2124
G	angle	degrees	
d19.H	electrical	0.1	2125
AL	angle	degrees	
d20.AS	Absolute encode	er	2126-2127
S	position within a sing	gle turn	
d21.AS	Absolute		2128
Н	encoder turns		
d22.J-L	inertia ratio	1%	2129
d23.dc	DC bus voltage	1V	2130
р	value	dc	
d24.At	drive	deg	2131
h	temperature	rees	
		Celsius	
d25.tiE	accumulated	sec	2132-2133
	operation time	onds	

[1	1
d26.1.	Vibration	Hz	2134
Fr	frequency 1		
d28.2.	Vibration	Hz	2136
Fr	frequency 2 (end		
	jitter frequency)		
d29.cn	current control		2137
	mode		
d30.Ai	Speed	0.0	2138
1	command input	01V	
	value		
d31.Ai	torque	0.0	2139
2	command input	01V	
	value		
d32.c.E	Number of		2140
r	encoder		
	communication		
	anomalies		
d33.H1	Hardware		2141
	model (hardware		
	information)		
d34.H2	hardware		2142
	version		
d35.S1	software		2143
	version		
d36.C.	position	instructi	2144-2145
PU	command pulse	on unit	
	sum		
d37.F.P	position	instructi	2146-2147

U	feedback pulse	on unit	
	summation		
Curren			2180
t Fault			
Numb			
er			

Note: 1. All parameters support 485 reading, parameter read-write address refers to parameter code: such as P03-09, read-write address is decimal 309

2. Parameter write reference drive permission settings. For example, if the current permission level of the drive is 1, it cannot write parameters higher than permission 1. Parameters written are not saved when power is off.

10.3 Modbus communication protocol overview

10.3.1 Introduction

Nexus monitors communicate with other devices using the RTU transfer mode of the AEG Modicon Modbus protocol. This communication is compatible with both RS-232 and RS-485 standards.

- RS-232 communication requires a Nexus monitor and a single connection to other devices, using only channel 1 to the Nexus monitor.
- RS-485 supports multiple Nexus monitors connected to a network, is a two-wire connection, up to 115200 baud, ports 1-4 are available.

10.3.2 Communication packets

Communication occurs between a Modbus master and one or

more Nexus slaves. The master initiates all communications by sending a "request packet" to the designated slave, which replies with a "reply packet." Communication packets are arranged in a string of 8 bytes as follows:

From address, one byte
Function code, one byte
Data, N bytes, high byte first, low byte last
CRC (RTC Error Detection Code), 2 bytes
Dead time, 3.5 bytes transfer time.
A single packet can send up to 127 registers.

10.3.3 From Address and Send Requests

Each slave device on the communication bus has its own dedicated address, responding only to addresses addressed by the master. The packet returned to the master has the same address in the slave address field as the request packet. These addresses are programmable and range from 0 to 255.

Slave address 0 is a transfer command that allows the master to send the same packet to all devices at once. All slaves follow the packet's instructions but do not respond. Transfer requests are only useful for functions 6 and 10, which represent presetting a single register and presetting multiple registers, respectively. See Tables 1.3 and 1.4.

10.4 function number

The function number of a packet tells the addressed slave what action to perform. Nexus supports the following Modus function numbers.

table 1.1 function number

function number		described
16-ary	decimal	
03H	3	read hold register
06H	6	preset single register
10H	16	Preset multiple registers

10.4.1 Function No. 03: Read hold register

This function allows the master to read one or more parameter values (data registers) from a Nexus slave. This data register is a 16-bit value transmitted in the format "Big Endian." High bytes read first, low bytes read later.

BIG-ENDIAN means that the low byte is arranged at the low end of the memory, and the high byte is arranged at the high end of the memory.

The master sends a packet defining a start register for the slave and the number of registers to read. The slave responds with a packet containing the requested parameter values within the range specified in the original request.

In the following example, the master device requests a slave at 01 to send the values in two registers, starting with register 00001, and the slave replies with the values 3031H and 3037H from registers 00001 and 00002.

Host sending format:

Slave address Function number Data number read from start address CRC

Slave sending format:

Slave address function number byte number value CRC of each data

table 1.2 Function Number 03 Example

host package	hexadecimal	Slave package	hexadecimal
definition	address	definition	address
slave address	01H	slave address	01H
function	03H	function number	03H
number			
data start	00H	number of bytes	04H
address high			
byte			
data start	01H	Data 1 High Byte	30H
address low			
byte			
Number of	00H	Data 1 Low Byte	31H
registers high			
byte			
Register	02H	Data 2 High Byte	30H
Number Low			
Byte			
CRC low byte	95H	Data 2 Low Byte	37H
CRC High Byte	СВН	CRC low byte	F1H
		CRC High Byte	2AH

10.4.2 Function No. 06: Adjust individual registers

This feature allows the master to modify a single register on the Nexus slave. The data register is a 16-bit value, with high bytes transferred first and low bytes transferred later. In the following example, the master device holds the value 0001H in register 57346 (E002) in the Nexus slave with address 01H. Host sending format:

143

Slave Address Function Number Data Start Address Data Value CRC Slave sending format:

Slave Address Function Number Data Start Address Data Value CRC Table 1.3 6 Examples of Function Numbers

host package	hexadecimal	Slave package	hexadecimal
definition	address	definition	address
slave address	01H	slave address	01H
function number	06H	function number	06H
data start	EOH	data start address	EOH
address high byte		high byte	
data start	01H	data start address	01H
address low byte		low byte	
high byte of data	00H	high byte of data	00H
low byte of data	01H	low byte of data	01H
CRC low byte	2EH	CRC low byte	2EH
CRC High Byte	0AH	CRC High Byte	0AH

10.4.3 Function No. 10: Adjust Register

This function allows the master to modify a contiguous set of registers on the Nexus slave. The data register is a 16-bit value, with the high byte being transferred first and the low byte being transferred later.

In the following example, the master device holds the value 0001H in register 57345, the value 0001H in register 57346, and the value 0001H in register 57347 in the Nexus slave with address 01H. Host sending format:

Slave address Function number Data start address Number of modified

data First data CRC

Slave sending format:

Slave address Function number Data start address Number of modified data CRC

10.4.4 Data start address

Hexadecimal range: 0000H-FFFFH

Decimal range: 0001-65535

For example, for some Scada software, in order to read the value in the save register, the address format should be 4 (XXXXX),XXXXX is the decimal address.

table 1.4	Function number 10 example
-----------	----------------------------

host package	hexadecima	Slave package	hexadecim
definition	l address	definition	al address
slave address	01H	slave address	01H
function number	10H	function number	10H
data start address	EOH	data start address	EOH
high byte		high byte	
data start address	01H	data start address	01H
low byte		low byte	
Number of	00H	Number of Setpoints	00H
Setpoints High Byte		High Byte	
Set Point Number	03H	Set Point Number	03H
Low Byte		Low Byte	
number of bytes	06H	CRC low byte	E6H
Data 1 High Byte	00H	CRC High Byte	08H
Data 1 Low Byte	01H		
Data 2 High Byte	00H		

-		
Data 2 Low Byte	01H	
Data 3 High Byte	00H	
Data 3 Low Byte	01H	
CRC low byte	4DH	
CRC High Byte	46H	

10.5 dead time

Nexus slaves consider data reception to be complete if they do not receive data from the master within a transmission time of 3.5 bytes (approximately 7ms at 4800 baud and approximately 300us at 115200 baud). If the delay between two bytes in the transmission process of the master is greater than this time, the slave considers it dead time. So the conclusion from the dead time is that all unaddressed slaves pay attention to new packets coming from the host.

10.6 Response to Exception Program

If the slave encounters an illegal command or other problem while executing the master command, an exception response packet is sent to the master. The exception response packet contains an error code to indicate the type of error.

The following table shows the error codes and corresponding error types.

	Table 1 5 Error codes and Types		
error	error type	explain	
code			
01	illegal	Slave does not support function number in	
	function	request packet	
	number		

Table 1-5 Error Codes and Types

02	illegal address	The slave does not recognize the address of the data field in the transmitted request packet	
03	illegal data	The data mentioned in the transfer request packet is not supported by registers in the Nexus slave	
06	Busy, refuse package	Slave is busy performing long operation and cannot receive request packet	

In the following example, the master device requests the value in the slave transmit register 00256 at address 01H, and the slave sends an error response message indicating that it is busy.

Table 1.6 Example Exception Response				
host	package	hexadecimal	Slave	packa

host pack	age	hexadecimal	Slave	package	hexadecimal
meaning		address	meaning		address
address		01H	address		01H
function number	er	03H	function number		03H
data start add	ress	01H	error cod	е	06H
high byte					
data start address		00H	CRC low l	byte	C1H
low byte					
Number	of	00H	CRC High Byte		32H
registers High byte					
Number	of	01H			
registers Low byte					
CRC low byte		85H			
CRC High Byte		F6H			

Chapter XI Special Functions

11.1 absolute encoder usage

11.1.1 Description of functions

Using servo motors with absolute encoders, absolute value detection systems can be constructed by upper devices. By means of absolute value detection system, it is no longer necessary to carry out the home reset operation every time the power is turned on. This function reads the number of turns and position data of absolute encoder based on MODBUS communication, and the upper device processes and controls to realize the related functions of absolute encoder.

11.1.2 MODBUS-based communication servo basic settings and instructions

The encoder battery alarm and number of revolutions data are initialized when the system using absolute value encoder is put into use(F06.En0 clears encoder alarm;F07.En1 clears absolute value encoder multi-turn value). Because the motor body is disconnected from the battery before the first use, the encoder will have no battery alarm and loop memory function.

param eter code	name	description	
P00-23	slave address	Setting range: 0-255, default 1 Set according to equipment requirements	
P00-24	Modbus Setting range: 0-7, default 2		

.0	communication baud rate	0: 2400 1: 4800 2: 9600 3: 19200 4: 38400 5: 57600 6: 115200 7: 25600
P00-24 .1	verification mode	Setting range: 0-3, default 0 0: no check, 2 stop bits 1: even check, 1 stop bit 2: odd parity, 1 stop bit 3: No check, 1 stop bit

11. 1.3Absolute data address based on MODBUS communication

content	Address:	remarks
	decimal	
Absolute encoder position	2126-2127	Single-turn numerical
within a single turn		range: 0-8388608
Absolute encoder turns	2128	Multi-turn value range:
		0-65535

11.1.4 Absolute encoder related alarm processing

alar m cod es	Fault alarm cause	fault alarm check	disposal measures
E.64 3	When bus encoder is set to multi-turn	Check the voltage of	Replace battery and clear alarm via F06.EN0 (see
	absolute value, external battery	external battery of	Chapter 8.4)

	voltage is low	encoder and	
		confirm it is	
		higher than	
		3.0V.	
E.64	Read abnormal	Check d21.ASH	If the multiturn value is
4	multi-turn data, or	(see Chapter	greater than 32767, clear
E.64	turn value exceeds	8.3) for	the multiturn data via
5	±32768	multi-turn	F07.EN1 (see Chapter
		values	8.4)
A.93	Absolute encoder	Check encoder	Replace battery and clear
0	battery failure	external	alarm via F06.EN0 (see
		battery voltage	Chapter 8.4)

11.1.5 Absolute encoder battery replacement

To avoid absolute position data loss, please replace the battery if any of the following conditions occur in the drive.

1. When the driver displays A.930, it represents a low battery voltage warning. The battery must be replaced in time to avoid loss of absolute position data of the motor. After replacing the battery, use the auxiliary function F06.EN0 to clear the alarm.

2. When the driver displays E.643, it indicates that the battery voltage is low alarm. When this alarm occurs, the motor cycle data cannot be recorded normally, and the battery must be replaced immediately. After replacing the battery, use the auxiliary function F06.EN0 to clear the alarm after replacing the battery, and check the origin of the equipment at the same time. At the same time, use the auxiliary function F07.EN1 to clear the motor multi-turn data

Note: It isrecommended to replace the battery under the condition that the drive is energized to avoid the loss of absolute position data.